Answer:
the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
Explanation:
Given: radius of disk, R = 2.0 cm = 2 × 10⁻² cm, surface charge density,σ = 6.3 μC/m² = 6.3 × 10⁻⁶ C/m², distance on central axis, z = 12 cm = 12 × 10⁻² cm.
The electric field, E at a point on the central axis of a charged disk is given by E = σ/ε₀(
)
Substituting the values into the equation, it becomes
E = σ/ε₀(
) = 6.3 × 10⁻⁶/8.854 × 10⁻¹²(
) = 7.12 × 10⁵(
) = 7.12 × 10⁵(1 - 0.9864) = 7.12 × 10⁵ × 0.0136 = 0.0968 × 10⁵ = 9.68 × 10³ N/C = 9.68 kN/C
Therefore, the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
Answer:
No, i will not use a water pipe consisting of the two metals
Explanation:
Looking at the reduction potential of the both metals, it is clear that an electrochemical cell is set up with iron as the anode and copper as the cathode.
This will make the iron to quickly corrode and eventually destroy the water pipe. It is better to have a set up in which another metal that is higher than iron in the electrochemical series is combined with it.
Answer:
I don't know what to say . just for points
Answer:
The Prandtl number for this example is 14,553.
Explanation:
The Prandlt number is defined as:

To compute the Prandlt number for this case, is best if we use the same units in every term of the formula.

Now that we have coherent units, we can calculate Pr
