Answer:
Q = 0.061 = Kc
Explanation:
Step 1: Data given
Temperature = 500 °C
Kc=0.061
1.14 mol/L N2
5.52 mol/L H2
3.42 mol/L NH3
Step 2: Calculate Q
Q=[products]/[reactants]=[NH3]²/ [N2][H2]³
If Qc=Kc then the reaction is at equilibrium.
If Qc<Kc then the reaction will shift right to reach equilibrium.
If Qc>Kc then the reaction will shift left to reach equilibrium.
Q = (3.42)² / (1.14 * 5.52³)
Q = 11.6964/191.744
Q = 0.061
Q = Kc the reaction is at equilibrium.
Strength, the capacity of the invi elements
Answer:
Thomson--atoms cotain electron
Ernest Rutherford--atoms have a positive nucleus
R.A Millikan--electrons have Q=-1
Dalton--atoms are indivisible
Answer:
heya!!!
Explanation:
In atomic physics, the Rutherford–Bohr model or Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity.
Answer: option <span>A) increases from bottom to top within the group.
Explanation:
</span>It is a known trend that the metallic character of the elements increase from let to right and from top to bottom.
The greater the metallic character the greater the reactivity of the metal.
So, the elements of the columns 1 and 2 are the most reactive metals and among them the elements at the bottom are yet more reactive.
<span>The higher reactivity of the metals that are lower in the periodic table is attributed to the greater total number of electrons.
The greater the total number of electrons the more reactive the metals
as their outermost electrons (the valence electrons which are those that react) are located further from the nucleus and therefore they are held less
strongly, which makes them react more easily.</span>