Average speed = (total distance covered) / (total time to cover the distance) .
Total distance = (80 + 50 + 40) = 170 km
Total time = (1 + 0.5 + 0.5) = 2 hours
Average speed = (170 km) / (2 hrs) = 85 km/hr .
Answer:
V = 11.83 m/s
Explanation:
Given the following data;
Mass = 2000 kg
Force = 10000N
Distance = 14 m
To find the final velocity of the car;
First of all, we would determine the acceleration of the car;
Acceleration = force/mass
Acceleration = 10000/2000
Acceleration = 5 m/s²
Next, we would use the third equation of motion to find the final velocity;
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
V² = 0² + 2*5*14
V² = 0 + 140
V = √140
V = 11.83 m/s
The total amount of energy stored in the particles of an object is called its internal energy. The internal energy of an object is made up of the kinetic energy due to the random motion of the particles and the potential energy due to the interactive forces among the particles.
Try this solution (if it is possible, check it in other sources):
1. for m_Tarzan=75kg., initial_height=4m., end_height=0 m. and g=10 N/kg. Energy is:
2. The same value of Energy is applied for m_Tarzan+Jane=75+50=125 kg.:
3. According to the formula of the Speed:
Speed=sqrt(6000/125)=sqrt(48)=4sqrt(3)≈4*1.71=6.84 (m/s)
Answer: 6.84 (m. per sec.)