Answer:

Explanation:
given,
length of the ship = 120 m
length of model of the ship = 4 m
Speed at which the ship travels = 70 km/h
speed of model = ?
by using froude's law

for dynamic similarities




hence, the velocity of model will be 12.78 km/h
The force acting on the object is constant, so the acceleration of the object is also constant. By definition of average acceleration, this acceleration was
<em>a</em> = ∆<em>v</em> / ∆<em>t</em> = (6 m/s - 0) / (1.7 s) ≈ 3.52941 m/s²
By Newton's second law, the magnitude of the force <em>F</em> is proportional to the acceleration <em>a</em> according to
<em>F</em> = <em>m a</em>
where <em>m</em> is the object's mass. Solving for <em>m</em> gives
<em>m</em> = <em>F</em> / <em>a</em> = (10 N) / (3.52941 m/s²) ≈ 2.8 kg
Answer:
D,B,C,A,C
Explanation:
I believe that is the correct answers but it is unclear. I don't think the key for the second last question would let the current flowing so the bulb would be off.
Answer:
The metal will melt but their will be no change in temperature.
Explanation:
The metal is at its melting temperature which means it is still in solid phase but have to cross the enthalpy of its condensation at this same temperature to convert into liquid phase.
<u>On supplying heat, the metal's temperature will not change as the heat will be required as enthalpy of condensation to melt the solid to liquid at the melting temperature.</u>
Explanation:
8 m × (1000 mm / m) = 8000 mm