V = 60km/h
S=500km
t = ?
v = S/t
t = S/v
t = 500km / 60 km/h
t ≈ 8,33 h
Answer:
b
c
e
h
Explanation:
Note that the swing direction was not giving in the question and direction could be sideways (in a turn) or in a track or both
The question show something in common ...acceleration
So let's look at the statements and pick the correct ones
a is false while b is correct as the train is accelerating
c is correct. The train is accelerating even thou the speed could not be ascertained
d is false and not feasible as the train is accelerating
e is true as the train maybe moving at a constant speed in a circle
f is false. This could be constant velocity in a circle. Same as g (false)
h is true. It's accelerating
Answer:
18 miles
Explanation:
The average speed is 6 mph
Melanie ran for 3 hours
Speed × Time = Distance
So, 6 mph × 3 h = 18 miles
Answer:
<h2>
d₂ = 3d</h2><h2>
The diameter of the second wire is 3 times that of the initial wire.</h2>
Explanation:
Using the formula for calculating the resistivity of an object to find the diameter.
Resistivity P = RA/L
R is the resistance of the material
A is the cross sectional area
L is the length of the material
Since A = πd²/4
P = R( πd²/4)/L
P = Rπd²/4L ... 1
If the second wire of the same material and length is found to have resistance R/9, the resistivity of the second material will be;
P₂ = (R/9)A₂/L₂
P₂ = (R/9)(πd₂²/4)/L₂
P₂ = (Rπd₂²/36)/L₂
P₂ = (Rπd₂²)/36L₂
Since the length and resistivity are the same;
P = P₂ and L =L₂
Equating 1 and 2;
Rπd²/4L = (Rπd₂²)/36L₂
Rπd²/4L = (Rπd₂²)/36L
d² = d₂²/9
d₂² = 9d²
Taking the square root of both sides;
√d₂² = √9d²
d₂ = 3d
Therefore the diameter of the second wire is 3 times that of the initial wire
Answer:
did you ever get the answer