<span>XY4Z2-->Square planar (Electron domain geometry: Octahedral) sp3d2
XY4Z-->Seesaw (Electron domain geometry: Trigonal bipyramidal) sp3d
XY5Z-->Square pyramidal (Electron domain geometry: Octahedral) sp3d2
XY2Z3-->Linear (Electron domain geometry: Trigonal bipyramidal) sp3d
XY2Z-->Bent (Electron domain geometry: Trigonal planar) sp2
XY3Z-->Trigonal pyramidal (Electron domain geometry: Tetrahedral) sp3
XY2Z2-->Linear (Electron domain geometry: Tetrahedral) sp3
XY3Z2-->T shaped (Electron domain geometry: Trigonal bipryamidal) sp3d
XY2-->Linear (Electron domain geometry: Linear) sp
XY3 Trigonal planar (Electron geometry: Trigonal planar) sp2
XY4-->Tetrahedral (Electron domain geometry: tetrahedral) sp3
XY5-->Trigonal bipyramidal (Electron domain geometry: Trigonal bipyramidal) sp3d
XY6-->Octahedral (Electron domain geometry: Octahedral) sp3d2</span>
Given:
K = 0.71 = Kp
The reaction of sulphur with oxygen is
S(s) + O2(g) ---> SO2(g)
initial Pressure 6.90 0
Change -x +x
Equilibrium 6.90-x x
Kp = pSO2 / pO2 = 0.71 = x / (6.90-x)
4.899 - 0.71x = x
4.899 = 1.71x
x = 2.86 atm = pressure of SO2 formed
temperature = 950 C = 950 + 273.15 K = 1223.15 K
Volume = 50 L
Let us calculate moles of SO2 formed using ideal gas equation as
PV = nRT
R = gas constant = 0.0821 L atm / mol K
putting other values
n = PV / RT = 2.86 X 50 / 1223.15 X 0.0821 = 1.42 moles
Moles of Sulphur required = 1.42 moles
Mass of sulphur required or consumed = moles X atomic mass of sulphur
mass of S = 1.42 X 32 = 45.57 grams or 0.04557 Kg of sulphur
Answer: determines the age of sample Carbon-14 is used in radiocarbon dating and radiolabeling. Medically important, a radioactive isotope is carbon-14, which is used in a breath test to determine the ulcer-causing bacteria Heliobacter pylori
The radiocarbon age of a certain sample of unknown age can be determined by measuring its carbon 14 content and comparing the result to the carbon-14 activity in modern and background samples.
net ionic equation
B) SO₄²⁻ (aq) + Ba²⁺ (aq) → BaSO₄ (s)
Explanation:
We have the following chemical equation:
2 Na⁺ (aq) + SO₄²⁻ (aq) + Ba²⁺ (aq) + 2 Cl⁻ (aq) → 2 Na⁺ (aq) + 2 Cl⁻ (aq) + BaSO₄ (s)
To get the net ionic equation we remove the spectator ions and we get:
SO₄²⁻ (aq) + Ba²⁺ (aq) → BaSO₄ (s)
were:
(aq) - aqueous
(s) - solid
Learn more about:
net ionic equation
brainly.com/question/2094377
brainly.com/question/9489859
#learnwithBrainly