Answer:
B) K⁺, Sr²⁺ , O²⁻
Explanation:
Potassium is present in group one. It is alkali metal and have one valance electron.Potassium need to lose its one valance electron and form cation to get complete octet.
That's why it shows K⁺.
Sr is alkaline earth metal. It is present in group two. It has two valance electrons. Strontium needed to lose its two valance electrons and get stable electronic configuration.
When it loses its two valance electrons it shows cation with charge of +2.
Sr²⁺
Oxygen is present in group 16. It has sex valance electrons. It needed two more electrons to complete the octet. That's why oxygen gain two electron and form anion with a charge of -2.
O²⁻
Answer:
1 Atm
Explanation:
Dalton's law
The total pressure is 3 Atm so all you have to do is subtract the other partial pressures from 3
<span> Molar mass (H2)=2*1.0=2.0 g/mol
Molar mass (F2)=2*19.0=38.0 g/mol
Molar mass (HF)=1.0+19.0=20.0 g/mol
5.00 g H2 * 1mol H2 /2 g H2=2.50 mol H2
38.0 g F2*1mol F2/38.0 g F2=1.00 mol F2
H2(g) + F2(g) → 2 HF(g)
From reaction 1 mol 1 mol
From problem 2.50 mol 1 .00mol
We can see that excess of H2, and that F2 is a limiting reactant.
So, the amount of HF is limited by the amount of F2.
</span> H2(g) + F2(g) → 2 HF(g)
From reaction 1 mol 2 mol
From problem 1.00 mol 2.00mol
2.00 mol HF can be formed.
2.00 mol HF*20.0g HF/1mol HF=40.0 g HF can be formed
Answer:
Spring tides are extremely high and extremely low. This is created when the sun and moon pull together.
Explanation: