Answer:
Chemical potential energy is the energy stored in the chemical bonds of a substance. The various chemicals that make up gasoline contain a large amount of chemical potential energy that is released when the gasoline is burned in a controlled way in the engine of the car.
Explanation:
The block is made of A) Tin, as its specific heat capacity is 
Explanation:
When an amount of energy Q is supplied to a sample of material of mass m, the temperature of the material increases by
, according to the following equation
:
where
is the specific heat capacity of the material.
In this problem, we have:
m = 2 kg = 2000 g is the mass of the unknown material
is the amount of energy supplied to the block
is the change in temperature of the material
Solving the equation for
, we can find the specific heat capacity of the unknown sample:

And by comparing with tabular values, we can find that this value is approximately the specific heat capacity of tin.
Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Answer:

Explanation:
From the question we are told that

Generally the equation for momentum is mathematically given by

Therefore
T-Joe momentum 


Answer:
The final velocity of the object is 330 m/s.
Explanation:
To solve this problem, we first must find the acceleration of the object. We can do this using Newton's Second Law, given by the following equation:
F = ma
If we plug in the values that we are given in the problem, we get:
42 = 7 (a)
To solve for a, we simply divide both sides of the equation by 7.
42/7 = 7a/7
a = 6 m/s^2
Next, we should write out all of the information we have and what we are looking for.
a = 6 m/s^2
v1 = 0 m/s
t = 55 s
v2 = ?
We can use a kinematic equation to solve this problem. We should use:
v2 = v1 + at
If we plug in the values listed above, we should get:
v2 = 0 + (6)(55)
Next, we should solve the problem by performing the multiplication on the right side of the equation.
v2 = 330 m/s
Therefore, the final velocity reached by the object is 330 m/s.
Hope this helps!