Answer and Explanation:
It's very important to assume that the rate of radioactive decay will remain constant over time to make scientists' lives easier when calculating the ages of fossils, compounds, etc.
If the rate changes, it would be extremely challenging for people to figure out the relative ages of rock strata, fossils, or other substances with radioactive elements in them. This is a fundamental assumption in order to be able to use radioactive dating.
Hope this helps!
The correct option is B.
Mendeleev was the one who originated the idea of arranging elements in the periodic table according to their chemical and physical properties. He left spaces in the periodic table and predicted the discovery of those elements that had not been discovered then. One of these elements is Gallium. He predicted that gallium is going to be a metal and he gave the properties that the element will possess. He also predicted that the element gallium will be placed under aluminium in the periodic table.
Answer:
120g Using Density Equation.
Explanation:
Density =mass/volume
We need to the solve for the mass.
Mass=Density * Volume
Mass= 2.40 g/ml * 50.0 ml = 120g
What I can do to conserve energy is always turning off the lights when I don’t need them, and not watching alot of Tv and go outside.
Answer:
1.089%
Explanation:
From;
ν =1/2πc(k/meff)^1/2
Where;
ν = wave number
meff = reduced mass or effective mass
k = force constant
c= speed of light
Let
ν =1/2πc (k/meff)^1/2 vibrational wave number for 23Na35 Cl
ν' =1/2πc(k'/m'eff)^1/2 vibrational wave number for 23Na37 Cl
The between the two is obtained from;
ν' - ν /ν = (k'/m'eff)^1/2 - (k/meff)^1/2 / (k/meff)^1/2
Therefore;
ν' - ν /ν = [meff/m'eff]^1/2 - 1
Substituting values, we have;
ν' - ν /ν = [(22.9898 * 34.9688/22.9898 + 34.9688) * (22.9898 + 36.9651/22.9898 * 36.9651)]^1/2 -1
ν' - ν /ν = -0.01089
percentage difference in the fundamental vibrational wavenumbers of 23Na35Cl and 23Na37Cl;
ν' - ν /ν * 100
|(-0.01089)| × 100 = 1.089%