Answer : The balanced chemical equation will be:
(i) 
(ii) 
Explanation :
Balanced chemical equation : It is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
Part (i):
The balanced chemical equation will be:

This reaction is a single displacement reaction in which most reactive element (potassium) displaces the least reactive element (hydrogen) form their solution.
Part (ii):
The balanced chemical equation will be:

This reaction is a single displacement reaction in which most reactive element (zinc) displaces the least reactive element (magnesium) form their solution.
Answer: an element, feature, or factor that is liable to vary or change.
"there are too many variables involved to make any meaningful predictions"
Explanation:
Answer:
The formula of the original halide is SrCl₂.
Explanation:
- The balanced equation of this reaction is:
SrX₂ + H₂SO₄ → SrSO₄ + 2 HX, where X is the halide.
- From the equation stichiometry, 1.0 mole of strontium halide will result in 1.0 mole of SrSO₄.
- The number of moles of SrSO₄ <em>(n = mass/molar mass) </em>= (0.755 g) / (183.68 g/mole) = 4.11 x 10⁻³ mole.
- The number of moles of SrX are 4.11 x 10⁻³ moles from the stichiometry of the balanced equation.
- n = mass / molar mass, n = 4.11 x 10⁻³ moles and mass = 0.652 g.
- The molar mass of SrX₂ = mass / n = (0.652) / (4.11 x 10⁻³ moles) = 158.62 g/mole.
- The molar mass of SrX₂ (158.62 g/mole) = Atomic mass of Sr (87.62 g/mole) + (2 x Atomic mass of halide X).
- The atomic mass of halide X = (158.62 g/mole) - (87.62 g/mole) / 2 = 71 / 2 g/mole = 35.5 g/mole.
- This is the atomic mass of Cl.
- <em>So, the formula of the original halide is SrCl₂</em>.
Your final answer is that you will need 52.9mL of the 8.20 M of LiCl
The products will be magnesium phosphate and potassium chloride. You then have to watch a solubility chart to see which one of these is not soluable. In this case it is magnesium phosphate.