Answer:
1.788 C DEGREES
Explanation:
STP is 1 atm at 273.15 K
P1V1/T1 = P2V2/T2
(1)(62.65) / (273.15) = (612/760)(78.31)/T2
T2 = 274.93 K = 1.788 C
Answer:
0.877 mol
Step-by-step explanation:
We can use the<em> Ideal Gas Law </em>to solve this problem.
pV = nRT Divide both sides by RT
n = (pV)/(RT)
Data:
p = 646 torr
V = 25.0 L
R = 0.082 06 L·atm·K⁻¹mol⁻¹
T = 22.0 °C
Calculations:
(a) <em>Convert the pressure to atmospheres
</em>
p = 646 torr × (1 atm/760 torr) = 0.8500 atm
(b) <em>Convert the temperature to kelvins
</em>
T = (22.0 + 273.15) K = 295.15 K
(c) <em>Calculate the number of moles
</em>
n = (0.8500 × 25.0)/(0.082 06 × 295.15)
= 0.877 mol
Answer:
Speed, being a scalar quantity, is the rate at which an object covers distance. The average speed is the distance (a scalar quantity) per time ratio. On the other hand, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes.
Answer:
The concentration of chloride ion is 2.887 M.
Explanation:
Here we have a combination BaCl₂ and AlCl₃
1 mole BaCl₂ can produce 2 moles chloride ions as follows;
BaCl₂ → Ba²⁺ + 2Cl⁻
Therefore;
0.554 mole BaCl₂ can produce 2×0.554 moles chloride ions;
1 mole AlCl₃ can produce 3 moles chloride ions as follows;
AlCl₃ → Al³⁺ + 3Cl⁻
Therefore;
0.593 mole AlCl₃ can produce 3×0.593 moles chloride ions
Total concentration of chloride ions = 2×0.554 + 3×0.593 = 2.887 moles of Cl⁻ in 2×16.8 ml solution
The concentration of Cl⁻ is 2.887 M