The true statements are:
<span>The equation has a variable in the exponent position.
</span><span>The graph has a variable rate of change which causes it to have a curved shape.
These are the defining characteristics of an exponential function.</span>
Answer:0.25 or 25%
Step-by-step explanation:
Answer:
n=288
Step-by-step explanation:
Rewrite the equation as
√
n
=
18
√
8
−
8
√
18
.
√
n
=
18
√
8
−
8
√
18
To remove the radical on the left side of the equation, square both sides of the equation.
√n
2
=
(
18
√
8
−
8
√
18
)
2
Simplify each side of the equation.
Use
n
√
a
x
=
a
x
n
to rewrite
√
n as n
1
2
.
(
n
1
2
)
2
=
(
18
√
8
−
8
√
18
)
2
Simplify
(
n
1
2
)
2
.
Multiply the exponents in
(
n
1
2
)
2
.
Apply the power rule and multiply exponents,
(
a
m)n
=
a
m
n
.
n
1
2
⋅
2
=
(
18
√
8
−
8
√
18
)
2
Cancel the common factor of 2
Cancel the common factor.
n
1
2
⋅
2
=
(
18
√
8
−
8
√
18
)
2
Rewrite the expression.
n
1
=
(
18
√
8
−
8
√
18
)
2
Simplify.
n
=
(
18
√
8
−
8
√
18
)
2
Simplify
(
18
√
8
−
8
√
18
)
2
Simplify each term.
Rewrite
8 as 2
2
⋅
2
.
Factor
4 out of 8
n
=
(
18
√
4
(
2
)
−
8
√
18
)
2
Rewrite
4 as 2
2
n
=
(
18√
2
2
2
−
8
√
18
)
2
Pull terms out from under the radical.
n
=
(
18
(
2
√
2
)
−
8
√
18
)
2
Multiply
2 by 18
n
=
(
36
√
2
−
8
√
18
)
2
Rewrite
18
as
3
2
⋅
2
.
Factor
9
out of
18
.
n
=
(
36
√
2
−
8
√
9
(
2
)
)
2
Rewrite
9
as
3
2
.
n
=
(
36
√
2
−
8
√
3
2
⋅
2
)
2
Pull terms out from under the radical.
n
=
(
36
√
2
−
8
(
3
√
2
)
)
2
Multiply
3
by
−
8
.
n
=
(
36
√
2
−
24
√
2
)
2
Simplify terms.
Subtract
24
√
2
from
36
√
2
.
n
=
(
12
√
2
)
2
Simplify the expression.
Apply the product rule to
12
√
2
.
n
=
12
2
√
2
2
Raise
12
to the power of
2
.
n
=
144
√
2
2
Rewrite
√
2
2
as
2
.
Use
n
√
a
x
=
a
x
n
to rewrite
√
2
as
2
1
2
.
n
=
144
(
2
1
2
)
2
Apply the power rule and multiply exponents,
(
a
m
)
n
=
a
m
n
.
n
=
144
⋅
2
1
2
⋅
2
Combine
1
2
and
2
.
n
=
144
⋅
2
2
2
Cancel the common factor of
2
.
Cancel the common factor.
n
=
144
⋅
2
2
2
Rewrite the expression.
n
=
144
⋅
2
1
Evaluate the exponent.
n
=
144
⋅
2
Multiply
144
by
2
.
n
=
288
Average= f(2)−f(0)/2−0
=62.5−250/ 2-0
<span>= −93.75</span>
Given Information:
Years = t = 35
Semi-annual deposits = P = $2,000
Compounding semi-annually = n = 2
Interest rate = i = 6.5%
Required Information
Accumulated amount = A = ?
Answer:
Accumulated amount = $515,827
Step-by-step explanation:
The future value of amount earned over period of 35 years and interest rate 6.5% with semi-annual deposits is given by
FV = PMT * ((1 + i/n)^nt - 1)/(i/n))
Where
n = 2
i = 0.065
t = 35
FV = 2000*((1 + 0.065/2)^2*35 - 1)/(0.065/2))
FV = 2,000*(257.91)
FV ≈ $515,827
Therefore, Anthony will have an amount of $515,827 when he retires in 35 years.