Answer:
The answer is
. Let's learn why.
Explanation:
Newton's law of universal gravitation says;

Here G is a universal gravitational <u>constant</u> and is measured experimentally.
Sun's gravitational pull on mercury is:

Therefore 
Sun's gravitational pull on Earth is:

Therefore 
As a result;

<span>B. velocity .................</span>
Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
Answer:
66.2 sec
Explanation:
C₁ = 1.0 F
C₂ = 1.0 F
ΔV = Potential difference across the capacitor = 6.0 V
C = parallel combination of capacitors
Parallel combination of capacitors is given as
C = C₁ + C₂
C = 1.0 + 1.0
C = 2.0 F
R = resistance = 33 Ω
Time constant is given as
T = RC
T = 33 x 2
T = 66 sec
V₀ = initial potential difference across the combination = 6.0 Volts
V = final potential difference = 2.2 volts
Using the equation


t = 66.2 sec
The solution for this problem is:
If they feel 50% of their weight that means that the
centripetal force is also 50% of their weight 1g - 0.5g = 0.5g
Then 0.5* 9.8m/s² * 18m = 88.2 would be v²
Then get the square root, the answer would be:
and v = 9.391 m/s is the answer.