1 mile = 1609.344 meters 1 hour = 3600 seconds Initial speed of the getaway car = v1 = 0 m/s (At rest) Speed at which the getaway car explodes = v2 = 120 mph = 120 x (1609.344/3600) m/s = 53.…
It's the instantaneous speed. Average speed would take all the different speeds from the whole ride in order to fine the median or middle speed.
(a) 0.448
The gravitational potential energy of a satellite in orbit is given by:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):
r = R + h
We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

and so, substituting:

We find

(b) 0.448
The kinetic energy of a satellite in orbit around the Earth is given by

So, the ratio between the two kinetic energies is

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.
(c) B
The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

For satellite A, we have

For satellite B, we have

So, satellite B has the greater total energy (since the energy is negative).
(d) 
The difference between the energy of the two satellites is:

Answer:
a) P1=100kpa
V1=6m³
V2=?
P2=50kpa
rearranging mathematically the expression for Boyle's law
V2=(P1V1)/P2=(100×6)/50=12m³
b) same apartment as in (a) but only the value of P2 changes
=> V2=(100×6)/40=15m³
Explanation:
since temperature is not changing we use Boyle's law. mathematically expressed as P1V1=P2V2