In the first case, the force acting on the spring is the weight of the mass:

This force causes a stretching of

on the spring, so we can use these data to find the spring constant:

In the second case, the first mass is replaced with a second mass, whose weight is

And since we know the spring constant, we can calculate the new elongation of the spring:
Answer:
The answer is "Choice E".
Explanation:
In this situation the option e is right because its resistance decreases through time, however, the time is the same for the same reason, whereas the sphere deteriorates, somehow it travels shorter distances however if the air resistance becomes are using the amplitude of movement declines, that's why other choices were wrong.
Answer:
4
Explanation:
In order for the current to continue flowing through the circuit (and for the bulbs to continue shining), there must be a closed path containing the battery where current can flow. Let's see the effect of removing each bulb on the circuit:
- 1: when removing bulb 1 only, the current can still flow through the path battery-bulb 3- bulb 4
- 2: when removing bulb 2 only, the current can still flow through the path battery-bulb 3- bulb 4
- 3: when removing bulb 3 only, the current can still flow through the path battery-bulb 1-bulb 2- bulb 4
- 4: when removing bulb 4 only, the current can no longer flow. In fact, there is no closed path that contains the battery now, so the current will not flow and all the bulbs will stop shining.
The volume would be 287cm³. Multiply all the 3 numbers by each other