Question 9 is 100 N.
Question 10 is No, the bike's motion is not changing so it could be at rest or moving at a constant velocity.
Question 11 is Be doubled.
Question 12 is Ella is correct.
Hope i helped.
Answer:
-4.71 m/s
Explanation:
Given:
y₀ = 1.13 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: v
v² = v₀² + 2a (y − y₀)
v² = (0 m/s)² + 2(-9.8 m/s²) (0 m − 1.13 m)
v = -4.71 m/s
Answer:
213 s
Explanation:
Slope is the ratio of change in vertical distance to change in horizontal distance.
Slope = vertical height / horizontal height
Therefore:
6.4% = vertical height / 12.42
vertical height = 6.4% * 12.42
vertical height = 0.8 miles
The distance travelled by the car (s) is:
s² = 0.8² + 12.42²
s² = 154.9
s = 12.45 miles
Acceleration (a) = 2.93 ft/s^2 = 0.00055 mile/s²
initial velocity (u) = 0, final velocity = 203 mph
Using:
s = ut + 0.5at²
12.45 = 0.5(0.00055)t²
t =213 s
I believe this is what you have to do:
The force between a mass M and a point mass m is represented by

So lets compare it to the original force before it doubles, it would just be the exact formula so lets call that F₁
So F₁ = G(Mm/r^2)
Now the distance has doubled so lets account for this in F₂:
F₂ = G(Mm/(2r)^2)
Now square the 2 that gives you four and we can pull that out in front to give
F₂ =
G(Mm/r^2)
Now we can replace G(Mm/r^2) with F₁ as that is the value of the force before alterations
now we see that:
F₂ =
F₁
So the second force will be 0.25 (1/4) x 1600 or 400 N.