Answer:
Now e is due to the ring at a
So
We say
1/4πEo(ea/ a²+a²)^3/2
= 1/4πEo ea/2√2a³
So here E is faced towards the ring
Next is E due to a point at the centre
So
E² = 1/4πEo ( e/a²)
Finally we get the total
Et= E²-E
= e/4πEo(2√2-1/2√2)
So the direction here is away from the ring
Answer:
a. Final velocity, V = 2.179 m/s.
b. Final velocity, V = 7.071 m/s.
Explanation:
<u>Given the following data;</u>
Acceleration = 0.500m/s²
a. To find the velocity of the boat after it has traveled 4.75 m
Since it started from rest, initial velocity is equal to 0m/s.
Now, we would use the third equation of motion to find the final velocity.
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
- S represents the displacement measured in meters.
Substituting into the equation, we have;


Taking the square root, we have;

<em>Final velocity, V = 2.179 m/s.</em>
b. To find the velocity if the boat has traveled 50 m.


Taking the square root, we have;

<em>Final velocity, V = 7.071 m/s.</em>
Answer:
a) Θ = ω₀*t + ½αt² To complete first revolution 2π rads = 0*t + ½αt² and to complete the first and second combined 4π rads = 0*t + ½α(t+0.810s)² Divide second by first: 2 = (t + 0.810s)² / t² This is quadratic in t and has roots at t = -0.336 s ← ignore and t = 1.96 s ◄ b) Use either equation from above: 2π rads = 0*t + ½α(1.96s)² α = 3.27 rad/s² ◄ Hope this helps!
Explanation:
Answer:
Al's mass is 102.92 kg
Explanation:
As there are no external forces in the horizontal direction, the horizontal net force must be zero:
As the force is the derivative in time of the momentum, this means that the horizontal momentum is constant:

where the suffix i and f means initial and final respectively.
The initial momentum will be:

But, as they are at rest, initially


So, this means:

We know that the have an combined mass of 195 kg:
.
so:
.





Now, we can use the values:


where the minus sign appears as they are moving at opposite directions


and this is the Al's mass.