The metal ball lost energy while the putty ball gained energy.
<h3>What is momentum?</h3>
Momentum is the product of mass and velocity of the body. We must note that momentum before collision is equal to momentum after collision.
1) Kinetic energy before collision = 1/2mv^2 = 0.5 * 6 * 4 = 12 J
2) kinetic energy after collision = 0.5 * 6 * 2= 6 J
3) Kinetic energy of putty ball = 0.5 * 6 * 2= 6 J
4) Energy lost by the metal ball = 12 J - 6 J = 6 J
5) Energy gained by the putty ball = 6 J - 0J = 6 J
6) The rest of the energy was converted to heat after the collision.
Learn more about kinetic energy: brainly.com/question/999862
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:
where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:
where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:
- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:
- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:
- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:
- Replacing by the givens in (5), we can solve for μsmín, as follows:
I think it would be that it has no atmosphere
Sound waves need different media in order to travel. This travels by the movement of the atom transferred to another up to its destination. The speed of sound is greatest in solids since the molecules of solid are closely packed together, followed by liquid and they are slowest in gases.
From the planks equation
E=hv
V= c/ wave length
V= 3×10^8/30×10^-9
=1×10^16
E= hv
6.63×10^-34×1×10^16
= 6.63×10^-18