Assuming the friction between the skaters and the ice is negligible, the magnitude of Porsha's acceleration is 2.8m/s².
Missing part of the question: determine the magnitude of Porsha's acceleration.
Given the data in the question;
- Mass of Porsha;

- Mass of Zorn;

- Force of Porsha push;

Magnitude of Porsha's acceleration; 
To determine the magnitude of Porsha's acceleration, we use Newton's second laws of motion:

Where m is the mass of the object and a is the acceleration.
We substitute the mass of Porsha and the force he used into the equation
Therefore, assuming the friction between the skaters and the ice is negligible, the magnitude of Porsha's acceleration is 2.8m/s².
Learn more: brainly.com/question/25125444
<span>1.0x10^3 Joules
The kinetic energy a body has is expressed as the equation
E = 0.5 M V^2
where
E = Energy
M = Mass
V = Velocity
Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion
E = 0.5 * 7.2 kg * (17 m/s)^2
E = 3.6 kg * 289 m^2/s^2
E = 1040.4 kg*m^2/s^2
E = 1040.4 J
So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
For the answer to the question above, on Earth, a one-pound object has a mass of about 0.453592 kilograms.
<span>Therefore the man's mass is 155 * 0.453592 = 70.30676 kilograms. </span>
<span>The part about the Moon's gravity is irrelevant. While the weight of a person or object would be different on the Moon, the mass would be the same.</span>
What happens is the potential value of the conductor decreases due to the presence of second conductor
as the capacitance is given by C = q/v
the value of v deceases as v-v1
thus the new capacitance is = C' = q/v-v1 thus the lowering of v increases the capacitance