Number of moles =

so to calculate molar mass (Molecular weight of compound):
Molecular weight =

=

= 50 g / mole
Now we calculate molecular weight of each compound in choices:
a) C₂H₄O = 44
b) CO₂ = 44
c) CH₃Cl = 50.4 ALMOST 50 so this is the correct answer
d) C₂H₆ = 30
Answer:
1..... nucleus
2......electron cloud
3.......protons
4........Neutrons
5..........electron
6............electrons
7...............Isotopes
8.....,...........ions
9....................charge
Answer:
56.9 mmoles of acetate are required in this buffer
Explanation:
To solve this, we can think in the Henderson Hasselbach equation:
pH = pKa + log ([CH₃COO⁻] / [CH₃COOH])
To make the buffer we know:
CH₃COOH + H₂O ⇄ CH₃COO⁻ + H₃O⁺ Ka
We know that Ka from acetic acid is: 1.8×10⁻⁵
pKa = - log Ka
pKa = 4.74
We replace data:
5.5 = 4.74 + log ([acetate] / 10 mmol)
5.5 - 4.74 = log ([acetate] / 10 mmol)
0.755 = log ([acetate] / 10 mmol)
10⁰'⁷⁵⁵ = ([acetate] / 10 mmol)
5.69 = ([acetate] / 10 mmol)
5.69 . 10 = [acetate] → 56.9 mmoles
Answer:
C
Explanation:
it belong to that group as it needs 1 electron to be chemically stable