Anything with a pH level of 3, 2, or 1.
Answer:
Explanation if an object is in motion and more force is applied to it, the object will begin moving faster. If two objects have the same mass and a greater force is applied to one of the objects, the object which receives the greater force will change speeds more quickly.:
Answer : The moles of
are, 2.125 mole.
Explanation : Given,
Molarity of
= 8.500 M
Volume of solution = 250 mL = 0.250 L (1 L = 1000 mL)
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:


Therefore, the moles of
are, 2.125 mole.
An aqueous solution in a 55 gallon (208 l drum), characterized by minimal buffering capacity, received 4kg of phenol and 1.5 kg of sodium phenate. What is the ph of the solution. The pka of phenol = 9.98. Mw of phenol and sodium phenate are 94 g/mol and 116 g/mol, respectively.
Volume of solution = 55 gallons = 208.2 L [ 1 gallon = 3.78 L]
moles of phenol = mass / molar mass = 4000 g / 94 = 42.55 moles
moles of sodium phenate = mass / molar mass = 1500 / 116 = 12.93 moles
pKa of phenol = 9.98
We know that the pH of buffer is calculated using Hendersen Hassalbalch's equation
pH = pKa + log [salt] / [acid]
volume is same for both the sodium phenate and phenol has we can directly take the moles of each in the formula
pH = 9.98 + log [12.93 / 42.55] = 9.46
Theses can include the power supply circuit a joule meter to measure the energy transferred which makes the calculations a lot easier.