Answer:
first option is not true
Explanation:
1 mole = 6.02 × 10²³ particles
C3H8 has 1 mole, so has 6.02 × 10²³ particles
5O2 has 5 moles so 5 × 6.02 × 10²³ = 3.01 × 10²⁴ particles
3CO2 has 3 moles so 3 × 6.02 × 10²³ = 1.806 × 10²⁴ particles
4H2O has 4 moles so 4 × 6.02 × 10²³ = 2.408 × 10²⁴ particles
From the reaction between Cu and HNO₃, the formed gas is NO₂ instead of NO₃. Hence the correct balanced equation would be,
Cu(s) + 4HNO₃(aq) → Cu(NO₃)₂(aq) + 2NO₂(g) + 2H₂O<span>(l)
Here, Cu goes to </span>Cu(NO₃)₂ by changing its oxidation number from 0 to +2 while NO₃⁻ goes to NO₂ by reducing its oxidation state from +5 to +4 . Hence Cu is oxidized by HNO₃ in the reaction.
Answer:
<h2> 162g/mol</h2>
Explanation:
The question is incomplete. The complete question includes the information to find the empirical formula of nicotine:
<em>Nicotine has the formula </em>
<em> . To determine its composition, a sample is burned in excess oxygen, producing the following results:</em>
<em>Assume that all the atoms in nicotine are present as products </em>
<h2>Solution</h2>
To find the empirical formula you need to find the moles of C, H, and N in each of the compound.
- 1.0 mol of CO₂ has 1.0 mol of C
- 0.70 mol of H₂O has 1.4 mol of H
- 0.20 mol of NO₂ has 0.20 mol of N
Thus, the ratio of moles is:
Divide all by the smallest number: 0.20
Hence, the empirical formula is C₅H₇N
Find the mass of 1 mole of units of the empirical formula:
Total mass = 60g + 7g + 14g = 81g
Two moles of units of the empirical formula weighs 2 × 81g = 162g and three units weighs 3 × 81g = 243 g.
Thus, since the molar mass is between 150 and 180 g/mol, the correct molar mass is 162g/mol and the molecular formula is twice the empirical formula: C₁₀H₁₄N₂.
When a reactant is removed based on a reaction at equilibrium, the condition favors the backward reaction. This obeys the Le Chatelier's principle which states that any disturbance in the system shall be dealt in a way that the system counters that disturbance.