I don’t think so because I have never hear of that
data is not provided. what type of degrees? and which country?
Answer:
Number of positive four-digit integers which are multiples of 5 and less than 4,000 = 600
Explanation:
Lowest four digit positive integer = 1000
Highest four digit positive integer less than 4000 = 3999
We know that multiples of 5 end with 0 or 5 in their last digit.
So, lowest four digit positive integer which is a multiple of 5 = 1000
Highest four digit positive integer less than 4000 which is a multiple of 5 = 3995.
So, the numbers goes like,
1000, 1005, 1010 .....................................................3990, 3995
These numbers are in arithmetic progression, so we have first term = 1000 and common difference = 5 and nth term(An) = 3995, we need to find n.
An = a + (n-1)d
3995 = 1000 + (n-1)x 5
(n-1) x 5 = 2995
(n-1) = 599
n = 600
So, number of positive four-digit integers which are multiples of 5 and less than 4,000 = 600
Answer:
1. Even - B
2. Even - B
3. Odd - A
Step-by-step explanation:
Example 1: 7+7 = 14
7 is odd, 14 is even.
Example 2: 4 + 4 = 8
4 is even, and 8 is even.
Example 3: 4 + 5 = 9
4 is even, 5 is odd, 9 is odd.
Answer:
Multiply vector c by the scalar -1/2.
Step-by-step explanation:
Look at vector c.
It has an x component of 4 and a y component of 4.
You can write vector c as a sum of its components using unit vectors in the x direction (i) and in the y direction (j).
c = 4i + 4j
Now look at vector d, and write it also as a sum of its x and y components.
d = -2i - 2j
Now ask yourself, what operation do I do to 4 to end up with -2?
One answer is to multiply 4 by -1/2.
d = (-1/2)c = (-1/2)(4i) + (-1/2)(4j) = -2i - 2j
That worked. By multiplying vector c by the scalar -1/2, you end up with vector d.