Answer:
Microsoft Word - Hand tools SON
Answer:
Explanation:
a) for shifting reactions,
Kps = ph2 pco2/pcoph20
=[h2] [co2]/[co] [h2o]
h2 + co2 + h2O + co + c3H8 = 1
it implies that
H2 + 0.09 + H2O + 0.08 + 0.05 = 1
solving the system of equation yields
H2 = 0.5308,
H2O = 0.2942
B) according to Le chatelain's principle for a slightly exothermic reaction, an increase in temperature favors the reverse reaction producing less hydrogen. As a result, concentration of hydrogen in the reformation decreases with an increasing temperature.
c) to calculate the maximum hydrogen yield , both reaction must be complete
C3H8 + 3H2O ⇒ 3CO + 7H2( REFORMING)
CO + H2O ⇒ CO2 + H2 ( SHIFTING)
C3H8 + 6H2O ⇒ 3CO2 + 10 H2 ( OVER ALL)
SO,
Maximum hydrogen yield
= 10mol h2/3 molco2 + 10molh2
= 0.77
⇒ 77%
Answer:
You need a 120V to 24V commercial transformer (transformer 1:5), a 100 ohms resistance, a 1.5 K ohms resistance and a diode with a minimum forward current of 20 mA (could be 1N4148)
Step by step design:
- Because you have a 120V AC voltage supply you need an efficient way to reduce that voltage as much as possible before passing to the rectifier, for that I recommend a standard 120V to 24V transformer. 120 Vrms = 85 V and 24 Vrms = 17V = Vin
- Because 17V is not 15V you still need a voltage divider to step down that voltage, for that we use R1 = 100Ω and R2 = 1.3KΩ. You need to remember that more than 1 V is going to be in the diode, so for our calculation we need to consider it. Vf = (V*R2)/(R1+R2), V = Vin - 1 = 17-1 = 16V and Vf = 15, Choosing a fix resistance R1 = 100Ω and solving the equation we find R2 = 1.5KΩ
- Finally to select the diode you need to calculate two times the maximum current and that would be the forward current (If) of your diode. Imax = Vf/R2 = 10mA and If = 2*Imax = 20mA
Our circuit meet the average voltage (Va) specification:
Va = (15)/(pi) = 4.77V considering the diode voltage or 3.77V without considering it
Answer: (a) 0,142 (b) 52.99 (c) 2.83 (d) 88.26
Explanation:
If the refrigarating capacity is 150kw
(a) the mass flow rate of refrigerant, in kilograms per second is 0.142
(b) the power input to the compressor, in kilowatts is 52.99
(c) the coefficient of performance is 2.83
(d) the isentropic compressor efficiency is 68.6 per cent
Answer: d)Coercion
Explanation:Tool wear is defined as the situation when the cutting tool is subjected to the regular process of cutting metal then they tend to wear because of the continuous action of cutting and facing stresses and pressure . The mechanism that does not happen during this process are coercion that means the process of exerting forces on any material forcefully against the will or need. Therefore, adhesion,attrition and abrasion are the process of tool wear .So the correct option is (d)