Answer:
4.2s
Explanation:
Given parameters:
Power = 2190W
Mass of box = 1.47 x 10⁴g
distance = 6.34 x 10⁴mm
Unknown:
Time = ?
Solution:
Power is the rate at which work is done;
Mathematically;
Power =
Time =
Work done = weight x height
convert mass to kg;
100g = 1kg;
1.47 x 10⁴g = 14.7kg
convert the height to m;
1000mm = 1m
6.34 x 10⁴mm gives 63.4m
Work done = 14.7 x 9.8 x 63.4 = 9133.4J
Time taken =
= 4.2s
The fact that the layers of graphite are held together by only weak Van der Walls forces implies that they can slide over each other.
<h3>Why is graphite a solid lubricant?</h3>
We know that graphite is composed of layers. These hexagonal layers are held together by weak Van Der Walls forces and as such are able to slide over each other. The carbon atom in each layer are held together by strong covalent bonds.
The fact that the layers of graphite are held together by only weak Van der Walls forces implies that they can slide over each other and as such make the graphite fluid.
Thus, the image that shows these layers of graphite is attached to this an answer
Learn more about graphite:brainly.com/question/11095487
#SPJ1
Ok, so you've got to figure out a force F and you have the speed in which the boxer punches on determinate time and the mass of the sheet of paper.
So based on the formula that says that the Force is equal to the mass multiplied by the acceleration => F=ma.
You look at it and see that you only have mass which is measured on KG so there is no problem.
then you have the acceleration which is measured on meters and is defined by: a = Δv/Δt
So now you can replace the velocity and the time you have there
⇒ a 25m/s / 0.05s
you have computing that ⇒ 50m because the seconds were cancelled out.
and then you plug the meters into the force equation.
F=(0.005kg)(50)
F=0.25N
so the boxer will have a force of 0.25 Newton's.
Answer:No, it doesn't move easily downward because it will try to resist the movement ,due to a resistance force of inertia that it possess at rest.
Explanation:when an object has higher or larger mass it tends to resist any motion given to it unlike the one with lower mass.
The larger the mass the more resistance force an object has.