Answer:
F = 3.6 kN, direction is 9.6º to the North - East
Explanation:
The force is a vector, so one method to find the solution is to work with the components of the vector as scalars and then construct the resulting vector.
Let's use trigonometry to find the component of the forces, let's use a reference frame where the x-axis coincides with the East and the y-axis coincides with the North.
Wind
X axis
F₁ = 2.50 kN
Tide
cos 30 = F₂ₓ / F₂
sin 30 = F_{2y} / F₂
F₂ₓ = F₂ cos 30
F_{2y} = F₂ sin 30
F₂ₓ = 1.20cos 30 = 1.039 kN
F_{2y} = 1.20 sin 30 = 0.600 kN
the resultant force is
X axis
Fₓ = F₁ₓ + F₂ₓ
Fₓ = 2.50 +1.039
Fₓ = 3,539 kN
F_y = F_{2y}
F_y = 0.600
to find the vector we use the Pythagorean theorem
F = 
F = 
F = 3,589 kN
the address is
tan θ = F_y / Fₓ
θ = tan⁻¹
θ = tan⁻¹
0.6 / 3.539
θ = 9.6º
the resultant force to two significant figures is
F = 3.6 kN
the direction is 9.6º to the North - East
1. Mitosis and Meiosis are both ways cells duplicate DNA
2. They both go through PMAT ( prophase, metaphase, anaphase and telophase)
Answer:
D
Explanation:
<em>The most suitable testable question. in this case, would be that 'are there more home runs during the more humid months of the summer?'</em>
Since the aim of the investigation is to find the relationship between humidity and the number of home runs, measuring the number of home runs during the more humid months in the summer and comparing the data to the number of home runs during the less humid months in the same summer would provide the answer.
<u>Only option D raises a valid question that is relevant to the aim of the investigation.</u>
I believe the acceleration would be 5m/s
All you would need to do is divide the final speed by the time it took to get there. I am only about 80 sure this answer is correct, so take my advise only if you feel comfortable.
Answer:
Explanation:
The unknown charge can not remain in between the charge given because force on the middle charge will act in the same direction due to both the remaining charges.
So the unknown charge is somewhere on negative side of x axis . Its charge will be negative . Let it be - Q and let it be at distance - x on x axis.
force on it due to rest of the charges will be equal and opposite so
k3q Q / x² =k 8q Q / (L+x)²
8x² = 3 (L+x)²
2√2 x = √3 (L+x)
2√2 x - √3 x = √3 L
x(2√2 - √3 ) = √3 L
x = √3 L / (2√2 - √3 )
Let us consider the balancing force on 3q
force on it due to -Q and -8q will be equal
kQ . 3q / x² = k3q 8q / L²
Q = 8q (x² / L²)
so charge required = - 8q (x² / L²)
and its distance from x on negative x side = √3 L / (2√2 - √3 )