Answer:
A process that involves rearrangement of the molecular or ionic structure of a substance, as opposed to a change in physical form or a nuclear reaction.
Explanation:
Pretty much just not a physical reaction or otherwise
Answer:
The atoms become cations because they have lost electrons and the atoms and has a positive charge then atoms become a ions because they have gained electrons from cations and has a negative charge
Answer:
Equilibrium shifts to the right
Explanation:
An exothermic reaction is one in which temperature is released to the environment. Hence, if the reaction vessel housing an exothermic reaction is touched after reaction completion, we will notice that the reaction vessel e.g beaker is hot.
To consider the equilibrium response to temperature changes, we need to consider if the reaction is exothermic or endothermic. In the case of this particular question, it has been established that the reaction is exothermic.
Heat is released to the surroundings as the reactants are at a higher energy level compared to the products. Hence, increasing the temperature will favor the formation of more reactants and as such, the equilibrium position will shift to the left to pave way for the formation of more reactants. Thus , more acetylene and hydrogen would be yielded
Answer:
Explanation:
During titration indicators are often used to identify chemical changes between reacting species.
For colorless solutions in which no noticeable changes can easily be seen, indicators are the best bet. Most titration processes involves a combination of acids and bases to an end point.
Indicators are substances whose color changes to signal the end of an acid-base reaction. Examples are methyl orange, methyl red, phenolphthalein, litmus, cresol red, cresol green, alizarin R3, bromothymol blue and congo red.
Most of these indicators have various colors when chemical changes occur.
Also, there are heat changes that accompanies most of these reactions. These are also indicators of chemical changes.
Answer:
The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.
Explanation:
..[1]
..[2]
..[3]
..[4]
Using Hess's law:
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
2 × [4] = [2]- (3 ) × [1] - (2) × [3]




The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.