Answer:
The bismuth sample.
Explanation:
The specific heat of a substance (might not be a metal) is the amount of heat required for heating a unit mass of this substance by unit temperature (e.g., .) The formula for specific heat is:
,
where
- is the amount of heat supplied.
- is the mass of the sample.
- is the increase in temperature.
In this question, the value of (amount of heat supplied to the metal) and (mass of the metal sample) are the same for all four metals. To find (change in temperature,) rearrange the equation:
,
.
In other words, the change in temperature of the sample, can be expressed as a fraction. Additionally, the specific heat of sample, , is in the denominator of that fraction. Hence, the value of the fraction would be the largest for sample with the smallest specific heat.
Make sure that all the specific heat values are in the same unit. Find the one with the smallest specific heat: bismuth (.) That sample would have the greatest increase in temperature. Since all six samples started at the same temperature, the bismuth sample would also have the highest final temperature.
Answer:
The answer is D part of your lab notebook used for writing vocabulary
Hope it helps!
Answer: (1 Kilogram = 2.20462 pounds) . There are 2.2046226218 lb in 1 kilogram. To convert kilograms to pounds, multiply your figure by 2.205 for an approximate result. 1 kilogram is also equal to 2 lb and 3.27396195 oz. Working out a rough estimate in your head for converting to pounds and ounces may be tricky - remember that there are 16 ounces in a pound.
Answer:
Air can be described as: Mass and Mixture of Gases
Mass is defined as how much stuff an object contains - and by stuff, I mean matter, like atoms and molecules. And even though you can't see it, air has a lot of atoms and molecules. Air is a gas (as opposed to a liquid or a solid) and contains about 78% nitrogen, 21% oxygen, and 1% argon.
Explanation: