Endothermic<span> Reaction??? </span>
1. Has 4 sig figs, all non zeros are significant
2. 3 sig figs trailing zero after a decimal
3. 3 sig figs
Answer:
0.000000540
Explanation:
Step 1: Make an ICE chart for the solution of AgBr
"S" represents the molar solubility of AgBr
AgBr(s) ⇄ Ag⁺(aq) + Br⁻(aq)
I 0 0
C +S +S
E S S
Step 2: Write the expression for the solubility product constant (Ksp)
Ksp = [Ag⁺] [Br⁻] = S × S
Ksp = S² = (0.0007350)² = 0.000000540
Answer:
A sample of an ideal gas has a volume of 2.21 L at 279 K and 1.01 atm. Calculate the pressure when the volume is 1.23 L and the temperature is 299 K.
You need to apply the ideal gas law PV=nRT
You have the pressure, P=1.01 atm
you have the volume, V = 2.21 L
The ideal gas constant R= 0.08205 L. atm/ mole.K at 273 K
find n = PV/RT = (1.01 atm x 2.21 L / 0.08205 L.atm/ mole.K x 273 K)
n= 0.1 mole, Now find the pressure for n=0.1 mole, T= 299K and
L=1.23 L
P=nRT/V= 0.1mole x 0.08205 (L.atm/ mole.K x 299 k)/ 1.23 L
= 1.994 atm
Explanation:
Answer:
The reaction is favorable at all temperatures
Explanation:
Since G = H - TS, -H and +S would result in G = -H -TS, which will always be negative.