Answer:62.66°C or 235.66K
Explanation:Q=McpT, the energy was given in calories so you first convert to Joules by multiplying the value in calories by 4.184J.
17*4.184=71.128kJ.
71.128kJ=mcpT
71.128kJ=245*4.187*(T-Tm)
Tm is the final temperature of the mixture. The T is the temperature given which should be converted to Kelvin by adding 273...T=32+273=305K.
71128J=245*4.187*(305-Tm)
71128=312873.575-1025.815Tm
1025.815Tm=312873.575-71128
1025.815Tm=241745.58
Tm=241745.58/1025.815
Tm=235.66K
Answer:
for given question is 2.79 and
is 0.52
{i- vant hoff’s constant ; Kb- constant ; m molarity }
M = no. of moles of the solute present in one kg of solution
Let the weight of amount of solute be “w” and its molecular mass be “M”
Let the mass of the solvent in the given question be “x”




I believe the answer you are looking for is the 4th one.
Explanation:
Let us take the volume of block is x.
Since, the block is floating this means that it is in equilibrium. Formula to calculate net force will be as follows.

Also, buoyancy force
= (volume submerged in water × density of water) + (volume in oil × density of oil)
=
=
g
As, W = V × density of graphite × g
It is given that density of graphite is
or 2160
.
So, W = 2160 V g
= (0.592 V \rho + 408 V) g - 2160 V g = 0
= 1752
= 2959.46
or 2.959
is the density of oil.
It is given that mass of flask is 124.8 g.
Mass of 35.3
oil =
104.7 g
Hence, in second weighing total mass will be calculated as follows.
(124.8 + 104.7) g
= 229.27 g
Thus, we can conclude that in the second weighing mass is 229.27 g.
Answer:
25 possibly
Explanation:
I'm not too sure about this, but sodium oxide is Na2O, 2 sodium and 1 oxygen, so 12.5g * 2 is 25
If someone else comes up with a more convincing argument listen to them