<u>Answer:</u>
I think it's (C)
The products are suitable for making nuclear weapons.
hope this helps!
The organic product formed when 1−hexyne is treated with H₂O, H₂SO₄, and HgSO₄ will be 2-hexanone (structure attached).
This reaction is an example of an oxymercuration reaction of the organic product 1−hexyne.
Oxymercuration is shown in three steps to the right. The nucleophilic double bond attacks the mercury ion, releasing an acetoxy group. The mercury ion's electron pair attacks carbon on the double bond, generating a positive-charged mercuronium ion. Mercury's dxz and 6s orbitals give electrons to the double bond's lowest unoccupied molecular orbitals.
In the second stage, the nucleophilic H₂O attacks the highly modified carbon, freeing its mercury-bonding electrons. Electrons neutralize mercury ions by collapsing. Water molecules have positive-charged oxygen.
In the third stage, the negatively charged acetoxy ion released in the first step attacks the hydrogen of the water group, generating the waste product HOAc. The two electrons in the oxygen-hydrogen link collapse into oxygen, neutralizing its charge and forming alcohol.
You can also learn about organic products from the following question:
brainly.com/question/13513481
#SPJ4
Answer:
HCI(aq)+CH3COONa(s) ----> CH3COOH(aq)+NaCl(s)
NaOH(aq)+CH3COOH(aq) ----> CH3COONa(s)+H2O(l)
Explanation:
A buffer is a solution that resists changes in acidity or alkalinity. A buffer is able to neutralize a little amount of acid or base thereby maintaining the pH of the system at a steady value.
A buffer may be an aqueous solution of a weak acid and its conjugate base or a weak base and its conjugate acid.
The equations for the neutralizations that occurred upon addition of HCl or NaOH are;
HCI(aq)+CH3COONa(s) ----> CH3COOH(aq)+NaCl(s)
NaOH(aq)+CH3COOH(aq) ----> CH3COONa(s)+H2O(l)
Answer:
Water but with salt
Explanation:
You can’t see it but it’s there
Answer:
The atomic number is the number of protons in the nucleus