Answer: its a strip of transparent film, one side coated with gelatin emulsion containing microscopically small light-sensitive silver halide crystals
Explanation:
Answer:
a. 8.96 m/s b. 1.81 m
Explanation:
Here is the complete question.
a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.
What is her "takeoff" speed v
0
?
b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.
If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?
a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.
So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.
b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45
R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.
So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m
The condition is a neuron in when the outside of the neuron has a net positive charge and the inside has a net negative charge (due to accumulation of more sodium ions) is C. resting potential. T<span>he </span>resting membrane<span> </span>potential<span> of a </span>neuron<span> is approximately -70 mV (mV=</span><span>millivolt)</span>
Answer:
A.model the reflection of a light wave
The Wave Model of Light Toolkit provides teachers with standards-based resources for designing lesson plans and units that pertain to such topics as the light's wavelike behaviors, wave-particle duality, light-wave interference, and light polarization
B. .model the absorption of a light wave
The simplest model is the Drude/Lorentz model, where the light wave makes charged particle oscillate while the particle is also being damped by a force of friction (damping force)
A mirror provides the foremost common model for reflective light wave reflection and generally consists of a glass sheet with a gold coating wherever the many reflections happen. Reflection is increased in metals by suppression of wave propagation on the far side their skin depths
C.model the transmimssion of a light wave
The Wave Model describes how light propagates in the same way as we model ocean waves moving through the water. By thinking of light as an oscillating wave, we can account for properties of light such as its wavelength and frequency. By including wavelength information, the Wave Model can be used to explain colors.
Explanation:
1.A
2. C
3. Not Sure
4. Not Sure
5. Biometrics can help to identify
who's at risk for injuries and when
they're able to safely return, and
they can gauge athlete readiness to
determine when they'll be
performing at an optimal level.