Answer:
Yes the frequency of the angular simple harmonic motion (SHM) of the balance wheel increases three times if the dimensions of the balance wheel reduced to one-third of original dimensions.
Explanation:
Considering the complete question attached in figure below.
Time period for balance wheel is:


m = mass of balance wheel
R = radius of balance wheel.
Angular frequency is related to Time period as:

As dimensions of new balance wheel are one-third of their original values


The answers are B, C, E and F.
Atoms from an element is mostly made of protons, neutrons, and electrons. Proton numbers are like a class number for each element. Each element has their own and they're all different. And the number of protons are equal to the number of electrons. Therefore, B is correct.
Isotopes. It's different atoms from a same element that has the same number of protons but different number of neutrons. For example in hydrogen, there's 3 Isotopes for hydrogen. Therefore, C is correct.
Again, proton for the same element is never changed, even if they're different Isotopes. So, E is correct.
Isotopes, again, different elements may have different Isotopes. Some has only 1, others may have a few or more. So, F is correct too.
The S strain Pneumococcus bacteria had a smooth surface because IT IS SURROUNDED BY A CARBOHYDRATE CAPSULE CALLED THE S STRAIN. The other form, the R strain has a rough surface and no capsule. It is only the S strain that exhibits virulence.
Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89