Answer:
Both of them reach the lake at the same time.
Explanation:
We have equation of motion s = ut + 0.5at²
Vertical motion of James : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²

Vertical motion of John : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²

So both times are same.
Both of them reach the lake at the same time.
Answer:
The pendulum of the clock.
Explanation:
Hi there!
The kinetic energy is the energy associated with the velocity of the object. The potential energy is the energy associated with the position of the object. In the objects listed in the question, only one object is moving: the pendulum of the clock (assuming that the clock is functioning). If the clock functions, the pendulum is moving when it is at the lowest point of its arc of motion and with maximum velocity. All potential energy that the pendulum stored when it reached the highest height, is transformed into kinetic energy at the lowest point. Thus, at that point, the object has more kinetic energy than potential energy.
Answer:
Please check the attached file for the diagram
Explanation:
The velocity of the of the rowboat
through the river is the resultant velocity. It is obtained taking a vector sum of the velocity in still water and the velocity of the river.
There are several ways to take this vector sum, but the question makes it simple for us to use Pythagoras's theorem because the East and North directions are perpendicular to each other.
Hence;


Answer:
4.71 eV
Explanation:
For an electromagnetic wave with wavelength

the energy of the photons in the wave is given by

where h is the Planck constant and c the speed of light. Therefore, this is the minimum energy that a photon should have in order to extract a photoelectron from the copper surface.
The work function of a metal is the minimum energy required by the incident light in order to extract photoelectrons from the metal's surface. Therefore, the work function corresponds to the energy we found previously. By converting it into electronvolts, we find:

Answer:
Explanation:
Some exoplanets may depending on the climate and vicinity from the sun.