Answer:
kinetic energy
Explanation:
a certain amount of energy is transferred by the kick. The ball gains an equal amount of energy, mostly in the form of kinetic energy.
Answer:
y = 0.0233 m
Explanation:
In a Young's Double Slit Experiment the distance between two consecutive bright fringes is given by the formula:
Δx = λL/d
where,
Δx = distance between fringes
λ = wavelength of light
L = Distance between screen and slits
d = Slit Separation
Now, for initial case:
λ = 425 nm = 4.25 x 10⁻⁷ m
y = 2Δx = 0.0177 m => Δx = 8.85 x 10⁻³ m
Therefore,
8.85 x 10⁻³ m = (4.25 x 10⁻⁷ m)L/d
L/d = (8.85 x 10⁻³ m)/(4.25 x 10⁻⁷ m)
L/d = 2.08 x 10⁴
using this for λ = 560 nm = 5.6 x 10⁻⁷ m:
Δx = (5.6 x 10⁻⁷ m)(2.08 x 10⁴)
Δx = 0.0116 m
and,
y = 2Δx
y = (2)(0.0116 m)
<u>y = 0.0233 m</u>
Answer:
The angle of launch of the rubber band affects the initial velocity. The more the rubber band is stretched the more force it applies to return to equilibrium and the more kinetic energy that results in.