Weight of Chloroform : = 2.862 kg
<h3>Further explanation</h3>
Given
Density 1.483 g/ml
Volume = 1.93 L
Required
Weight of Chloroform
Solution
Density is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
Density formula:

ρ = density
m = mass
v = volume
Convert density to kg/L :
=1.483g/ml = 1.483 kg/L
So the weight(mass) :
= ρ x V
= 1.483 kg/L x 1.93 L
= 2.862 kg
Answer:
C
Explanation:
garbage being reduced is a far more long term other than the other stupid answer choices
Answer:
The object at 50°C will have a higher kinetic energy.
Explanation:
Temperature is a measure of the average kinetic energy of the particles in an object. As you introduce more energy into the system (e.g. heat the object), the particles on average move faster because they have more kinetic energy.
Because the concentration of molecules in the gas phase increases with increasing pressure, the concentration of dissolved gas molecules in the solution at equilibrium is also higher at higher pressures
<span>Step 1 is to determine the mass of each part
Mass of Ca is 40.08 g
Mass of C is 12.01 g
Mass of O is 16.00 x 3 = 48.00 g
Step 2 is to determine the total mass of the compound
Total mass of CaCO3 is 40.08 + 12.01 + 48.00 = 100.09 g
Step 3 is to determine the % of each part using the following formula:
Mass of part / total mass x 100 =
40.08 / 100.09 x 100 = 40.04 % Ca
12.01 / 100.09 x 100 = 12.00 % C
48.00 / 100.09 x 100 = 47.96 % O
Step 4 is to double check by adding all percentages. If they equal 100, then I probably did it right. :)
40.04
+12.00
+47.96
=100.00</span><span>
</span>