Answer : The fugacity in the solution is, 16 bar.
Explanation : Given,
Fugacity of a pure component = 40 bar
Mole fraction of component = 0.4
Lewis-Randall rule : It states that in an ideal solution, the fugacity of a component is directly proportional to the mole fraction of the component in the solution.
Now we have to calculate the fugacity in the solution.
Formula used :

where,
= fugacity in the solution
= fugacity of a pure component
= mole fraction of component
Now put all the give values in the above formula, we get:


Therefore, the fugacity in the solution is, 16 bar.
Answer:
Explanation:(differences)SOLIDS have maximum intermolecular attraction and fixed shape so their particles are stable. LIQUIDS have small particles and are tightly held by molecular bond but not as tight as solid. liquid assume the shape of their container.GAS has free movement of particles...SIMILARITIES.. Liquid,solid and gases can be kept in containers...
Answer:
Work done, W = 128 kJ
Explanation:
Given that,
Weight of a mountain climber, F = 800 N
It climbs to a cliff that is 160 m high.
We need to find the work done by the mountain climber. The work done by an object is given by the formula as follows :
W = Fd
Put the values of F and d.
W = 800 N × 160 m
W = 128000 J
or
W = 128 kJ
So, 128 kJ of work is done by the mountain climber.