Continental drift was a theory that explained how continents shift position on Earth's surface. Set forth in 1912 by Alfred Wegener, a geophysicist and meteorologist, continental drift also explained why look-alike animal and plant fossils, and similar rock formations, are found on different continents.
Answer:
x=2.8moles
Explanation:
first step balance the chemical equation
C2H6+O2-->CO2+2H2O
use more ratio to find the moles of water
1mole of C2H6= 2 moles of H2O
1.4mole of C2H6=?x
cross multiply
x=2.8 moles of H2O
Answer:

Explanation:
There are three heat transfers involved.
heat from combustion of propane + heat gained by water + heat gained by calorimeter = 0
q₁ + q₂ + q₃ = 0
m₁ΔH + m₂C₂ΔT + C_calΔT = 0
Data:
m₁ = 2.1 g
m₂ = 280 g
Ti = 25.00 °C
T_f = 26.55 °C
Ccal = 92.3 J·°C⁻¹
Calculations:
Let's calculate the heats separately.
1. q₁
q₁ = 2.1 g × ΔH = 2.1ΔH g
2. q₂
ΔT = T_f - Ti = 26.55 °C - 25.00 °C = 1.55 °C
q₂ = 280 g × 4.184 J·°C⁻¹ × 1.55 °C = 1816 J
3. q₃
q₃ = 92.3 J·°C⁻¹ × 1.55 °C = 143.1 J
4. ΔH

Explanation:
As it is given that water level is same as outside which means that theoretically, P = 756.0 torr.
So, using ideal gas equation we will calculate the number of moles as follows.
PV = nRT
or, n = 
= 
= 0.0052 mol
Also, No. of moles = 
0.0052 mol = 
mass = 0.0104 g
As some of the water over which the hydrogen gas has been collected is present in the form of water vapor. Therefore, at
= 24 mm Hg
=
atm
= 0.03158 atm
Now, P = 
= 0.963 atm
Hence, n =
= 0.0056 mol
So, mass of
= 0.0056 mol × 2
= 0.01013 g (actual yield)
Therefore, calculate the percentage yield as follows.
Percent yield = 
=
= 97.49%
Thus, we can conclude that the percent yield of hydrogen for the given reaction is 97.49%.
Answer:
The specific heat capacity of the unknown metal is 0.223 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. The constant of proportionality depends on the substance that constitutes the body as on its mass, and is the product of the specific heat by the mass of the body. So, the equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case, you know:
- Q= 418.6 J
- c= ?
- m= 75 g
- ΔT= 25 C
Replacing:
418.6 J= c* 75 g* 25 C
Solving:

c= 0.223 
<u><em>The specific heat capacity of the unknown metal is 0.223 </em></u>
<u><em></em></u>
<u><em>
</em></u>
<u><em></em></u>