Answer;
-it will move away from the large ball because like charges repel.
Explanation;
-Electric force is the force that pushes apart two like charges, or that pulls together two unlike charges. The basic law of electrostatics Like charges of electricity repel each other, whereas unlike charges attract each other.
When small, positively charged ball is moved close to a large, positively charged ball it would be pushed away from the large positively charged ball since they are both positively charged. One has to put in energy to try to move the small ball closer to the large ball. The closer one try to move it to the large ball, the more energy one has to put in, so the more electrical potential energy the small ball would have.
Answer:
55.96kJ
Explanation:
Energy = mass of diethyl ether × enthalpy of vaporization of diethyl ether
Volume (v) = 200mL, density (d) = 0.7138g/mL
Mass = d × v = 0.7138 × 200 = 142.76g
Enthalpy of vaporization of diethyl ether = 29kJ/mol
MW of diethyl ether (C2H5)2O = 74g/mol
Enthalpy in kJ/g = 29kJ/mol ÷ 74g/mol = 0.392kJ/g
Energy = 142.76g × 0.392kJ/g = 55.96kJ
The correct answer is Model A shows the three-dimensional shape of the molecule, but Model B does not.
Explanation:
Model A and B show the structure of a molecule. In the case of model A, the structure is represented through the use of three-dimensional shapes, while in model B the structure is represented using the letters of each element and showing how each element is connected to others.
In this context, one feature that makes model A better is that this represents the molecule using a 3D model, which is better to understand how the molecule looks like and what is its structure. Moreover, both models are alike because they show the number of atoms of each element, although model A does not show the types of elements.
Option (a) is correct.
Falling objects accelerate as they approach the ground.This is because of the force of gravity acting on the falling objects. so the velocity of these objects increases continuously as they approach the ground. the acceleration acting on the falling objects is a constant ( close to the surface of earth) and is called as acceleration due to gravity denoted by g. value of g=9.8 m/s².