<span>For a point mass the moment of inertia is just
the mass times the square of perpendicular distance to the rotation axis, I =
mr^2. That point mass relationship becomes the basis for all other moments of
inertia since any object can be built up from a collection of point masses. So the
I = (1.2 kg)(0.66m/2)^2 = 0.1307 kg m2</span>
Answer:
1.1299 x 10^-8 second
Explanation:
Period = 1 / f = 1 / (8.85 * 10^7) = 1.1299 x 01^-8 sec
Answer:
The rate of change of the shadow length of a person is 2.692 ft/s
Solution:
As per the question:
Height of a person, H = 20 ft
Height of a person, h = 7 ft
Rate = 5 ft/s
Now,
From Fig.1:
b = person's distance from the lamp post
a = shadow length
Also, from the similarity of the triangles, we can write:

Differentiating the above eqn w.r.t t:
Now, we know that:
Rate = 
Thus
Answer:
total momentum = 8.42 kgm/s
velocity of the first cart is 3.660 m/s
Explanation:
Given data
mass m1 = 2.3 kg
mass m2 = 1.5 kg
final velocity V2 = 4.9 m/s
final velocity V3 = - 1.9 m/s
to find out
total momentum and velocity of the first cart
solution
we know mass and final velocty
and initial velocity of second cart V1 = 0
so now we can calculate total momentum that is m1 v2 + m2 v2
total momentum = 2.3 ×4.9 + 1.5 ×(-1.9)
total momentum = 8.42 kgm/s
and
conservation of momentum is
m1 V + m2 v1 = m1 v2 + m2 v3
put all value and find V
2.3 V + 1.5 ( 0) = 2.3 ( 4.9 ) + 1.5 ( -1.9)
V = 8.42 / 2.3
V = 3.660 m/s
so velocity of the first cart is 3.660 m/s
Answer:
gravity
Explanation:
as the earth rotates on an axis, it causes an effect known as centripetal acceleration with is an acceleration that pulls objects towards the center of the object. in planets, we call this Gravity