Aaron's car is moving at speed of 30 m/s
His reaction time is given as 0.7 s
but when he is tired the reaction time is doubled
Now we need to find the distance covered by his car when he is tired during the time when he react to apply brakes
So here since during this time speed is given as constant so we can say that distance covered can be product of speed and time
So here we can use



So the car will move to 42 m during the time when he apply brakes
We will put the number of trips in the first column, the miles driven in the second column and gallons of fuel used in the third column.
8 7,680 1,010
7 9,940 1,330
12 14,640 1,790
12 13,920 2,050
Answer:
106.7 N
Explanation:
We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:

where
F is the average force
is the duration of the collision
m is the mass of the ball
v is the final velocity
u is the initial velocity
In this problem:
m = 0.200 kg
u = 20.0 m/s
v = -12.0 m/s

Solving for F,

And since we are interested in the magnitude only,
F = 106.7 N
<span>there is no horizontal displacement if he went straight up
straight up means vertical, so his vertical displacment is 20 m</span>