Resistance = ρ * (L/A) and Rf = Ri * ([1 + α * (Tf – Ti)]
ρ = Resistivity L = length in meters A = cross sectional area in m^2 α = temperature coefficient of resistivity
L = 1.50 m Area = π * r^2 r = d/2 = 0.25 cm = 2.5 * 10^-3 m Area = π * (2.5 * 10^-3)^2
The cylindrical rod is similar to a resistor. Since the current is decreasing, the resistance must be increasing. This means the resistance is increasing as the temperature increases. Resistance = Voltage ÷ Current At 20˚, R = 15 ÷ 18.5 At 92˚, R = 15 ÷ 17.2
Now you know the resistance at the two temperatures. Let’s determine the resistivity at the two temperatures. Resistance = ρ * (L/A) ρ = Resistance * (A/L)
At 20˚, ρ = (15 ÷ 18.5) * [π * (2.5 * 10^-3)^2] ÷ 1.5 = At 92˚, ρ = (15 ÷ 17.2) * [π * (2.5 * 10^-3)^2] ÷ 1.5 =
Now you know the resistivity at the two temperatures. Let’s determine the temperature coefficient of resistivity for the material of the rod.
Rf = Ri * ([1 + α * (Tf – Ti)] Rf = 15 ÷ 17.2, Ri = 15 ÷ 18.5, Tf = 92˚, Ti = 20˚
15 ÷ 17.2 = 15 ÷ 18.5 * [1 + α * (92 – 20)] Multiply both sides by (18.5 ÷ 15) (18.5 ÷ 15) * (15 ÷ 17.2) = 1 + α * 72 Subtract 1 from both sides (18.5 ÷ 15) * (15 ÷ 17.2) – 1 = α * 72 Divide both sides by 72 α = 1.05 * 10^-3
Answer:
geotric earth simulator I think ya I have no idea
Answer:
The sound waves are gathered by the outer ear and sent down the ear canal to the eardrum. The sound waves cause the eardrum to vibrate, which sets the three tiny bones in the middle ear into motion. The motion of the three bones causes the fluid in the inner ear, or cochlea, to move.
~+lil more info+~
The sound waves go through the ear canal into the middle ear, which includes the eardrum (a thin layer of tissue) and three tiny bones called ossicles. The sound causes the eardrum to vibrate. The ossicles amplify these vibrations and carry them to the inner ear.
I know that E.) Tension Force is one of them and B.) Gravity Force but I'm not sure about the others.
Answer:
Y
Explanation:
by adding all the numbers