Answer:
The gravity from the person's hand is weaker than the gravity from the pull of the earth
Explanation:
The gravity from the person's hand is weaker than the gravity from the pull of the earth
Answer:
The solution is given below:
Explanation:
The computation of the speed is shown below
As we know that
Speed = distance ÷ time
where
distance is 2000 km
And, the time is 2.5 hours
SO, the speed is
= 2,000 ÷ 2.5
= 800 km/h
Now the distance would be the same i.e. 2,000 km
but the time is 2 hours
So, the speed is
= 2,000 km ÷ 2 hours
= 1,000 km/hr
The direction should be opposite to the first airplane
Answer:
1) R1 + ((R2 × R3)/(R2 + R3))
2) 0.5 A
3) 3.6 V
Explanation:
1) We can see that resistors R2 and R3 are in parallel.
Formula for sum of parallel resistors; 1/Rt = 1/R2 + 1/R3
Making Rt the subject gives;
Rt = (R2 × R3)/(R2 + R3)
Now, Resistor R1 is in series with this sum of R2 and R3. Thus;
Total resistance of circuit = R1 + ((R2 × R3)/(R2 + R3))
2) R_total = R1 + ((R2 × R3)/(R2 + R3))
We are given;
R1 = 7.2 Ω
R2 = 8 Ω
R3 = 12 Ω
R_total = 7.2 + ((8 × 12)/(8 + 12))
R_total = 7.2 + 4.8
R_total = 12 Ω
Formula for current is;
I = V/R
I = 6/12
I = 0.5 A
3) since current through the circuit is 0.5 and R1 is 7.2 Ω.
Thus, potential difference through R1 is;
V = IR = 0.5 × 7.2 = 3.6 V
The equation to be used is the derived formulas for rectilinear motion at a constant acceleration. The formula for acceleration is
a = (v - v₀)/t
where
v and v₀ are the initial and final velocities, respectively
t is the time
a is the acceleration
Since it started from rest, v₀ = 0. Using the formula:
0.15 m/s² = (v - 0)/[2 minutes*(60 s/1 min)]
Solving for v,
v = 18 m/s
You measure the total distance the bike travels, and the total time it takes to travel that distance. You then divide the distance by the time