In the vertical direction, take up to be positive and down to be negative. Then the net <u>vertical</u> force would be
5120 N - 4050 N = 1070 N
(it's positive, so the net vertical force is pointing upward)
In the horizontal direction, take right to be positive and left to be negative. Then the net <u>horizontal</u> force would be
950 N - 1520 N = -570 N
(negative means the net horizontal force points to the left)
So the net force on the balloon is the vector
<em>F</em> = (1070 N) <em>i</em> + (-570 N) <em>j</em>
(where <em>i</em> and <em>j</em> are the unit vectors in the horizontal and vertical directions, respectively)
The magnitude of the net force on the balloon is the magnitude of this vector:
<em>F</em> = √((1070 N)² + (-570 N)²)
<em>F</em> ≈ 1212 N
Because the light from it travels to you about 874 thousand times
as fast as the sound does, so the hearing part falls behind the seeing
part.
The height, h to which the package of mass m bounces to depends on its initial velocity, v and the acceleration due to gravity, g and is given below:

<h3>What are perfectly elastic collision?</h3>
Perfectly elastic collisions are collisions in which the momentum as well as the energy of the colliding bodies is conserved.
In perfectly elastic collisions, the sum of momentum before collision is equal to the momentum after collision.
Also, the sum of kinetic energy before collision is equal to the sum of kinetic energy after collision.
Since some of the Kinetic energy is converted to potential energy of the body;


Therefore, the height to which the package m bounces to depends on its initial velocity and the acceleration due to gravity.
Learn more about elastic collisions at: brainly.com/question/7694106
Answer:
E = h f and since f = c / λ we have E = h c / λ
Thus λ = h c / E
Also, 1 ev = 1.6E-19 C
λ = 6.63E-34 * 3.0E8 / (1.6 * 1.6E-19)
λ = 6.63 * 3.0 / (1.6 * 1.6) * E-7
λ = 7.77E-7 = 777 nanometers
(B) is correct