Answer:

Explanation:
Given:
- Three identical charges q.
- Two charges on x - axis separated by distance a about origin
- One on y-axis
- All three charges are vertices
Find:
- Find an expression for the electric field at points on the y-axis above the uppermost charge.
- Show that the working reduces to point charge when y >> a.
Solution
- Take a variable distance y above the top most charge.
- Then compute the distance from charges on the axis to the variable distance y:

- Then compute the angle that Force makes with the y axis:
cos(Q) = sqrt(3)*a / 2*r
- The net force due to two charges on x-axis, the vertical components from these two charges are same and directed above:
F_1,2 = 2*F_x*cos(Q)
- The total net force would be:
F_net = F_1,2 + kq / y^2
- Hence,

- Now for the limit y >>a:

- Insert limit i.e a/y = 0

Hence the Electric Field is off a point charge of magnitude 3q.
Answer:
Resistance of the second wire is twice the first wire.
Explanation:
Let us first see the formula of resistance;
R = pxL/A
Here L is the lenght of the wire, A the area and p is the resistivity of wire.
As we are given that the length of second wire is double than that of the first wire, hence the resistance of second wire would be double.
Since we have two loop in second case, inducing double voltage but as resistance is doubled so the current would remain same according to ohms law
I = V/R
Answer:
motion
Explanation:
the motion causes static which is kinetic energy
1. b
2. c
3. a
4. a
5. b
6. should be 2400? unless u put the wrong numbers, it is probably 240 then
The potential energy is defined as Ep=m*g*h where m is the mass of the body, g=9.81 m/s² and h is the height of the body. In our case m=0.01 kg and h=1.5 m. So when we input the values into the equation:
Ep=0.01*9.81*1.5= 0.14715 J.
So the potential energy of a grape is Ep=0.14715 J.