1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
2 years ago
6

The working substance of a certain Carnot engine is 1.90 of an ideal

Physics
1 answer:
Ulleksa [173]2 years ago
5 0

Answer:

Explanation:

The energy for an isothermal expansion can be computed as:

\mathsf{Q_H =nRTIn (\dfrac{V_b}{V_a})} --- (1)

However, we are being told that the volume of the gas is twice itself when undergoing adiabatic expansion. This implies that:

V_b = 2V_a

Equation (1) can be written as:

\mathtt{Q_H = nRT_H In (2)}

Also, in a Carnot engine, the efficiency can be computed as:

\mathtt{e = 1 - \dfrac{T_L}{T_H}}

e = \dfrac{T_H-T_L}{T_H}

In addition to that, for any heat engine, the efficiency e =\dfrac{W}{Q_H}

relating the above two equations together, we have:

\dfrac{T_H-T_L}{T_H} = \dfrac{W}{Q_H}

Making the work done (W) the subject:

W = Q_H \Big(\dfrac{T_H-T_L}{T_H} \Big)

From equation (1):

\mathsf{W = nRT_HIn(2)  \Big(\dfrac{T_H-T_L}{T_H} \Big)}

\mathsf{W = nRIn(2)  \Big(T_H-T_L} \Big)}

If we consider the adiabatic expansion as well:

PV^y = constant

i.e.

P_bV_b^y = P_cV_c^y

From ideal gas PV = nRT

we can have:

\dfrac{nRT_H}{V_b}(V_b^y)=  \dfrac{nRT_L}{V_c}(V_c^y)

T_H =  T_L \Big(\dfrac{V_c}{V_b}\Big)^{y-1}

From the question, let us recall  aw we are being informed that:

If the volumes changes by a factor = 5.7

Then, it implies that:

\Big(\dfrac{V_c}{V_b}\Big) = 5.7

∴

T_H =  T_L (5.7)^{y-1}

In an ideal monoatomic gas \gamma = 1.6

As such:

T_H =  T_L (5.7)^{1.6-1}

T_H =  T_L (5.7)^{0.67}

Replacing the value of T_H =  T_L (5.7)^{0.67} into equation \mathsf{W = nRIn(2)  \Big(T_H-T_L} \Big)}

\mathsf{W =  nRT_L In(2) (5.7 ^{0.67 }-1}})

From in the question:

W = 930 J and the moles = 1.90

using 8.314 as constant

Then:

\mathsf{930 =  (1.90)(8.314)T_L In(2) (5.7 ^{0.67 }-1}})

\mathsf{930 = 15.7966\times 1.5315 (T_L )})

\mathsf{T_L= \dfrac{930 }{15.7966\times 1.5315}}

\mathbf{T_L \simeq = 39 \ K}

From T_H =  T_L (5.7)^{0.67}

\mathsf{T_H =  39 (5.7)^{0.67}}

\mathbf{T_H \simeq  125K}

You might be interested in
Convert 12cm to picometers​
Salsk061 [2.6K]

Answer:

1.2e+11

Explanation:

8 0
3 years ago
Read 2 more answers
A Net Force of 9.0 N acts through a distance of 3.0 m in a time of 3.0 s. The work done is?
JulijaS [17]
Work done is the distance a force acts over.

So, the work done here is 9.0N * 3.0m = 27 J
5 0
3 years ago
Read 2 more answers
Mr. Galonski loves to use the Electromagnetic Spectrum. Create a scenario in which Mr. Galonski is using waves from the electrom
Anestetic [448]

Answer:

The Scenario:

On a normal Sunday afternoon Mr. Golanski is sitting in his living room reading his book. He decides after a while to turn on the Television to see what’s on the news, (Mr. Golanski is using Radio waves when he turns his television on by signaling the TV from his remote control). After a few hours Mr. Golanski decides it’s time to have dinner. He heats up a quick meal in his microwave because he doesn’t have the patience for cooking. (He is using microwave radiation to heat his food because water molecules in food absorb the radiation). He sits down for his meal, and halfway through he starts to choke! In a panicked frenzy he runs to his bathroom to try and dislodge the obstacle from his throat. By doing so he switched on the fluorescent lights in his bathroom exposing himself to small amounts of ultraviolet radiation. (Fluorescent lights absorb UV radiation and transmit visible light along with small amounts of UV light). Unable to dislodge the obstacle from his throat Mr. Golanski seeks help from his neighbor who drives him straight to the ER. To treat him properly the physicians opt for a fluoroscopy to examine Mr. Golanski’s esophageal tract. (Thus he is making use of X-ray imaging to obtain a visual of his internal esophageal structure to check for the obstruction). Once treated and discharged from the hospital Mr. Golanski returns home grateful to have survived this ordeal with minimum damage.

Explanation:

The Electromagnetic Spectrum is the range of frequencies and wavelengths for different light waves. They range with increasing frequency from Radio waves, to Microwaves, to Infrared waves, to Visible waves, to Ultraviolet waves, to Infrared waves, to X-rays, and to Gamma rays. Several of which we use in our daily lives such as Radio waves when operating our television or using our cellular phones. We also use microwaves to heat our food or for communication with satellites. We are also exposed to natural Ultraviolet radiation from the sun; however, we can also get exposed to other forms such as from certain types of light bulbs. We see visible light in the form of all the colors we can detect around us. We make use of x-rays for imaging techniques widely used in medicine for diagnostics, as well as Infrared waves in our home security systems. The electromagnetic spectrum is always used as a part of our everyday life.

7 0
3 years ago
A wave pulse travels down a slinky. The mass of the slinky is m = 0.87 kg and is initially stretched to a length L = 6.8 m. The
Ber [7]

Answer:

1. v=14.2259\ m.s^{-1}

2. F_T=25.8924\ N

3. \lambda=29.6373\ m

Explanation:

Given:

  • mass of slinky, m=0.87\ kg
  • length of slinky, L=6.8\ m
  • amplitude of wave pulse, A=0.23\ m
  • time taken by the wave pulse to travel down the length, t=0.478\ s
  • frequency of wave pulse, f=0.48\ Hz=0.48\ s^{-1}

1.

\rm Speed\ of\ wave\ pulse=Length\ of\ slinky\div time\ taken\ by\ the\ wave\ to\ travel

v=\frac{6.8}{0.478}

v=14.2259\ m.s^{-1}

2.

<em>Now, we find the linear mass density of the slinky.</em>

\mu=\frac{m}{L}

\mu=\frac{0.87}{6.8}\ kg.m^{-1}

We have the relation involving the tension force as:

v=\sqrt{\frac{F_T}{\mu} }

14.2259=\sqrt{\frac{F_T}{\frac{0.87}{6.8}} }

202.3774=F_T\times \frac{6.8}{0.87}

F_T=25.8924\ N

3.

We have the relation for wavelength as:

\lambda=\frac{v}{f}

\lambda=\frac{14.2259}{0.48}

\lambda=29.6373\ m

8 0
3 years ago
A man ties one end of a strong rope 8.17 m long to the bumper of his truck, 0.524 m from the ground, and the other end to a vert
Kamila [148]

Answer:

2442.5 Nm

Explanation:

Tension, T = 8.57 x 10^2 N

length of rope, l = 8.17 m

y = 0.524 m

h = 2.99 m

According to diagram

Sin θ = (2.99 - 0.524) / 8.17

Sin θ = 0.3018

θ = 17.6°

So, torque about the base of the tree is

Torque = T x Cos θ x 2.99

Torque = 8.57 x 100 x Cos 17.6° x 2.99

Torque = 2442.5 Nm

thus, the torque is 2442.5 Nm.

8 0
3 years ago
Other questions:
  • What type of evidence should be collected first ?
    13·1 answer
  • You push a refrigerator with a force of 100 N. If you move the refrigerator a distance of 5 m while you are pushing, how much wo
    10·1 answer
  • Where might water be found on the moon
    5·2 answers
  • A car traveling at 22 m/s comes to an abrupt halt in 0.1 second when it hits a tree. What is the deceleration in meters per seco
    12·1 answer
  • a. Define Valency. b. Write the symbol and valency of the following : (i) Oxygen (ii) potassium 7. a. Magnesium burns in Oxygen
    15·2 answers
  • he force between two long parallel conductors is 15 kg/metre. the conductor spacing is 10 cm. If one conductor carries twice the
    5·1 answer
  • two boxes sit on a frictionless surface and are in contact with one another. the first box has a mass of 7 kg and the second box
    12·1 answer
  • Q 1: Calculate the pressure.
    10·1 answer
  • As a pendulum swings from its highest to its lowest position along an arc, what happens to its kinetic energy and potential ener
    12·1 answer
  • How much force is required to move a electron through an electric field with strength of 1.375 x 10^19 N/C?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!