Complete Question
A certain refrigerator, operating between temperatures of -8.00°C and +23.2°C, can be approximated as a Carnot refrigerator.
What is the refrigerator's coefficient of performance? COP
(b) What If? What would be the coefficient of performance if the refrigerator (operating between the same temperatures) was instead used as a heat pump? COP
Answer:
a

b
Explanation:
From the question we are told that
The lower operation temperature of refrigerator is
The upper operation temperature of the refrigerator is 
Generally the refrigerators coefficient of performance is mathematically represented as

=> 
=> 
Generally if a refrigerator (operating between the same temperatures) was instead used as a heat pump , the coefficient of performance is mathematically represented as
=>
=>
(a) The stress in the post is 1,568,000 N/m²
(b) The strain in the post is 7.61 x 10⁻⁶
(c) The change in the post’s length when the load is applied is 1.9 x 10⁻⁵ m.
<h3>Area of the steel post</h3>
A = πd²/4
where;
d is the diameter
A = π(0.25²)/4 = 0.05 m²
<h3>Stress on the steel post</h3>
σ = F/A
σ = mg/A
where;
- m is mass supported by the steel
- g is acceleration due to gravity
- A is the area of the steel post
σ = (8000 x 9.8)/(0.05)
σ = 1,568,000 N/m²
<h3>Strain of the post</h3>
E = stress / strain
where;
- E is Young's modulus of steel = 206 Gpa
strain = stress/E
strain = (1,568,000) / (206 x 10⁹)
strain = 7.61 x 10⁻⁶
<h3>Change in length of the steel post</h3>
strain = ΔL/L
where;
- ΔL is change in length
- L is original length
ΔL = 7.61 x 10⁻⁶ x 2.5
ΔL = 1.9 x 10⁻⁵ m
Learn more about Young's modulus of steel here: brainly.com/question/14772333
#SPJ1
Answer:
<h3>The answer is 5.4 kg</h3>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>5.4 kg</h3>
Hope this helps you
Did you try looking it up ?
Answer:
16.2 s
Explanation:
Given:
Δx = 525 m
v₀ = 0 m/s
a = 4.00 m/s²
Find: t
Δx = v₀ t + ½ at²
525 m = (0 m/s) t + ½ (4.00 m/s²) t²
t = 16.2 s