Answer: 750Kg
Explanation:
Recall that force is the product of the mass M, of an object moving at a uniform acceleration.
i.e Force = Mass x Acceleration
In this case, Mass = ?
Force = 3.00 x 10^3 N = (3.00 x 1000N)
= 3000N
Uniform acceleration = 4.00m/s^2
Force = Mass x Acceleration
3000N = Mass x 4.00m/s^2
Mass = (3000N/4.00m/s^2)
Mass = 750Kg (The SI unit of mass is kilograms)
Thus, the mass of the car is 750Kg
1 Nautical metre=1852 metres
10×1852
=18520 metres
Answer:

Explanation:
The period of a simple pendulum is given by the equation

where
L is the lenght of the pendulum
g is the acceleration due to gravity at the location of the pendulum
We notice from the formula that the period of a pendulum does not depend on the mass of the system
In this problem:
-The pendulum comes back to the point of release exactly 2.4 seconds after the release. --> this means that the period of the pendulum is
T = 2.4 s
- The length of the pendulum is
L = 1.3 m
Re-arranging the equation for g, we can find the acceleration due to gravity on the planet:

Answer:
Since you would have to do work on the charge to bring it back to its original position, the charge moves to a position of lower potential and lower potential energy.
The sloping surface of the inclined plane<span> supports part of the weight of the object as it moves up the slope. As a result, it takes less </span>force<span> to move the object uphill. The </span>trade<span>-off </span>is<span> that the object must be moved over a greater </span>distance<span> than if it were moved straight up to the higher elevation.</span>