I<span>f you have studied enzymes its a similar concept. Cells have proteins on the surface of their cell which hormones bind to (called receptors) The receptor must be a complimentary shape to the hormone for it to bind. Only target cells have the receptor with the complimentary shape so only these cells will be affected.</span>
Imagine a skinny straw in the water, standing right over the hole. The WEIGHT of the water in that straw is the force on the tape. Now, the volume of water in the straw is (1 mm^2) times (20 cm). Once you have the volume, you can use the density and gravity to find the weight. And THAT's the force on the tape. If the tape can't hold that force, then it peels off and the water runs out through the hole. /// This is a pretty hard problem, because it involved mm^2, cm, and m^3. You have to be very very very careful with your units as you work through this one. If you've been struggling with it, I'm almost sure the problem is the units.
The solution for this is:
Work done = force * distance = m*a*d and power = energy/time
The vo=0 and vf = 25 m/s and t=7 sec. This gives...
3.6 m/s^2 as acceleration and d=87.5 meters and thus F=ma= 5400 N.
Energy = 5400*87.5 = 4.7E5 Joules (2 sig. figs) and Power = 67,500 Watts or 90 HP (2 sig. figs again).
Answer:
The sum of PE and KE remains constant
Explanation: