Answer: Ok, first lest see out problem.
It says it's a Long cylindrical charge distribution, So you can ignore the border effects on the ends of the cylinder.
Also by the gauss law we know that E¨*2*pi*r*L = Q/ε0
where Q is the total charge inside our gaussian surface, that will be a cylinder of radius r and heaight L.
So Q= rho*volume= pi*r*r*L*rho
so replacing : E = (1/2)*r*rho/ε0
you may ask, ¿why dont use R on the solution?
since you are calculating the field inside the cylinder, and the charge density is uniform inside of it, you don't see the charge that is outside, and in your calculation actuali doesn't matter how much charge is outside your gaussian surface, so R does not have an effect on the calculation.
R would matter if in the problem they give you the total charge of the cylinder, so when you only have the charge of a smaller r radius cylinder, you will have a relation between r and R that describes how much charge density you are enclosing.
Answer:
Around 3.57m/s
Explanation:
p=mv
Let's denote the momentum, mass, and velocity of the car with the subscript 1, and for the truck use 2. After the collision, the combined momentum can be denoted with the subscript 3.

Hope this helps!
Answer:
Explanation:
To find the direction of this vector we need o find the angle that has a tangent of the y-component over the x-component:
but since we are in Q2 we have to add 180 degrees to that angle giving us 165.5 degrees
D. Equal to zero.
Because the forces balance each other.
Answer:
The reactance of the capacitor
Explanation:
In an AC circuit containing different elements (capacitors, resistors and inductors), we cannot simply calculate the equivalent resistance of the circuit, so another quantity is used, which is called reactance.
For a capacitor, the reactance is given by:

where:
f is the frequency of the AC current in the circuit
C is the capacitance of the capacitor
The reactance has a similar meaning to that of the resistance for a DC current. In fact, we notice that:
- When f=0 (which means we are in regime of DC current, because the current never changes direction), the reactance is infinite. This is correct: in a DC circuit, the capacitor does not let current pass through it, so it like it has infinite resistance (=infinite reactance)
- When f tends to infinite, the reactance becomes zero: in such situation, the current in the circuit changes direction so quickly that the capacitor has no enough time to "block" the current in the circuit, so it like it has almost zero resistance (zero reactance).