1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alukav5142 [94]
3 years ago
12

Why is the sky blue?

Physics
1 answer:
Taya2010 [7]3 years ago
4 0
A clear cloudless day-time sky is blue because molecules in the air scatter blue light from the sun more than they scatter red light. When we look towards the sun at sunset, we see red and orange colours because the blue light has been scattered out and away from the line of sight.
You might be interested in
What is the mass of 3 m3 of a substance having density 1200 kg/m3​
adell [148]

Answer:

3600 kg

Explanation:

From the question,

Density = Mass/Volume

D = M/V.............................. Equation 1

Where D = Density of the substance, M = mass of the substance, V = Volume of the subtance.

Make M the subject of the equation

M = D×V ............................ Equation 2

Given: D = 1200 kg/m³, V = 3 m³.

Substitute these values into equation 2

M = 1200×3

M = 3600 kg.

Hence the mass of the substance is 3600 kg

4 0
3 years ago
un futbolista patea una pelota que se encuentra en el pasto con un angulo de 30° (medido desde la horizontal) con la intención d
Rus_ich [418]

Answer:

i dont really know what it is

8 0
3 years ago
A 4000 kg satellite is placed 2.60 x 10^6 m above the surface of the Earth.
mash [69]

a) The acceleration of gravity is 4.96 m/s^2

b) The critical velocity is 6668 m/s (24,006 km/h)

c) The period of the orbit is 8452 s

d) The satellite completes 10.2 orbits per day

e) The escape velocity of the satellite is 9430 m/s

f) The escape velocity of the rocket is 11,191 m/s

Explanation:

a)

The acceleration of gravity for an object near a planet is given by

g=\frac{GM}{(R+h)^2}

where

G is the gravitational constant

M is the mass of the planet

R is the radius of the planet

h is the height above the surface

In this problem,

M=5.98\cdot 10^{24} kg (mass of the Earth)

R=6.37\cdot 10^6 m (Earth's radius)

h=2.60\cdot 10^6 m (altitude of the satellite)

Substituting,

g=\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)^2}=4.96 m/s^2

b)

The critical velocity for a satellite orbiting around a planet is given by

v=\sqrt{\frac{GM}{R+h}}

where we have again:

M=5.98\cdot 10^{24} kg (mass of the Earth)

R=6.37\cdot 10^6 m (Earth's radius)

h=2.60\cdot 10^6 m (altitude of the satellite)

Substituting,

v=\sqrt{\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=6668 m/s

Converting into km/h,

v=6668 m/s \cdot \frac{3600 s/h}{1000 m/km}=24,006 km/h

c)

The period of the orbit is given by the circumference of the orbit divided by the velocity:

T=\frac{2\pi (R+h)}{v}

where

R=6.37\cdot 10^6 m

h=2.60\cdot 10^6 m

v = 6668 m/s

Substituting,

T=\frac{2\pi (6.37\cdot 10^6 + 2.60\cdot 10^6)}{6668}=8452 s

d)

One day consists of:

t = 24 \frac{hours}{day} \cdot 60 \frac{min}{hours} \cdot 60 \frac{s}{min}=86400 s

While the period of the orbit is

T = 8452 s

So, the number of orbits completed by the satellite in one day is

n=\frac{t}{T}=\frac{86400}{8452}=10.2

e)

The escape velocity for an object in the gravitational field of a planet is given by

v=\sqrt{\frac{2GM}{R+h}}

where here we have:

M=5.98\cdot 10^{24} kg

R=6.37\cdot 10^6 m

h=2.60\cdot 10^6 m

Substituting, we find

v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=9430 m/s

f)

We can apply again the formula to find the escape velocity for the rocket:

v=\sqrt{\frac{2GM}{R+h}}

Where this time we have:

M=5.98\cdot 10^{24} kg

R=6.37\cdot 10^6 m

h=0, because the rocket is located at the Earth's surface, so its altitude is zero.

And substituting,

v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6)}}=11,191 m/s

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

6 0
3 years ago
What are two situational examples of unbalanced forces?
polet [3.4K]

An example of a balanced force is two cards leaning against each other and not falling over, or two football players blocking each other but neither overpowering the other. An example of an unbalanced force is two cards leaning on each other then falling over, or two football players blocking each other, then one tackles the other.

4 0
3 years ago
The unit meters corresponds to what variable
Sati [7]

Do you have any options? My guess would be distance but I could be wrong.

7 0
3 years ago
Other questions:
  • Transformers will not work on ______ electrical systems.
    12·2 answers
  • You can see this paper, your desk, and the person in front of you because light is being
    8·1 answer
  • Twenty students were surveyed to find out how many hours of tv they watch during a school week
    9·1 answer
  • A helium tank holds a volume of .02 m^3 at a pressure of 15.5*10^6 Pa and a temperature of 293 K. How many spherical balloons wi
    15·1 answer
  • One of the world trade center towers WTC1 is 1,368 feet tall, what is it's height in meters?​
    10·1 answer
  • A football is kicked into the air with a horizontal velocity of 20 m/s and a vertical velocity of 30 m/s what is the resultant v
    9·1 answer
  • Convert 56,789 mm to km.
    13·1 answer
  • How is electromagnetic energy from the microwave transformed into heat energy
    10·2 answers
  • Part
    13·1 answer
  • The distance from the Moon to Earth is 3.9 x 10^8 meters. What is the time required for a light ray to travel from the Moon to E
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!