The average speed would be 0.65 m/s, therefore the correct option is (A).
The average speed is calculated by the formula
Average speed= (total distance/ total time)
The total distance of the trip=9.5+3.5+15=28 m
The total time of trip=43 sec
Therefore the average speed=28/43=0.65 m/s.
Answer:
u = 104.68 m/s
Explanation:
given,
horizontal distance = 150 m
elevation of 12.4 m
angle = 8.6°
horizontal motion = x = u cos θ. t .............(1)
vertical motion =
................(2)
from equation(1) and (2)
..........{3}




u = 104.68 m/s
The initial speed of the ball is u = 104.68 m/s
The red box must way more. Gravitational potential energy is the product of a an objects mass times the acceleration due to gravity (which is constant on earth) times its height. Since the objects are on the same shelf they are at the same height, and since gravitational acceleration is constant as long as we stay on planet earth, then the mass is the only possible thing that could have changed. This means that the red box must weigh more than the blue box.
Answer:
a) 3.39 × 10²³ atoms
b) 6.04 × 10⁻²¹ J
c) 1349.35 m/s
Explanation:
Given:
Diameter of the balloon, d = 29.6 cm = 0.296 m
Temperature, T = 19.0° C = 19 + 273 = 292 K
Pressure, P = 1.00 atm = 1.013 × 10⁵ Pa
Volume of the balloon = 
or
Volume of the balloon = 
or
Volume of the balloon, V = 0.0135 m³
Now,
From the relation,
PV = nRT
where,
n is the number of moles
R is the ideal gas constant = 8.314 kg⋅m²/s²⋅K⋅mol
on substituting the respective values, we get
1.013 × 10⁵ × 0.0135 = n × 8.314 × 292
or
n = 0.563
1 mol = 6.022 × 10²³ atoms
Thus,
0.563 moles will have = 0.563 × 6.022 × 10²³ atoms = 3.39 × 10²³ atoms
b) Average kinetic energy = 
where,
Boltzmann constant,
Average kinetic energy = 
or
Average kinetic energy = 6.04 × 10⁻²¹ J
c) rms speed = 
where, m is the molar mass of the Helium = 0.004 Kg
or
rms speed = 
or
rms speed = 1349.35 m/s
Answer:
Pascal's law (also Pascal's principle[1][2][3] or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.[4] The law was established by French mathematician Blaise Pascal in 1653 and published in 1663.[5][6]