Answer:

Explanation:
The law of conservation of angular momentum states that angular momentum remains constant when there is no external moment or forces applied to the system. Let assume that star can be modelled as an sphere, then:

The final angular speed is:



Answer:
DONTKNOW NEED CAREER FILD FIRST TO ANWSER
Explanation:
We will apply the concept of period in a pendulum, defined as the product between 2
by the square root of the length over gravity, this is mathematically

Here,
T = Period
L = Length
g = Acceleration due to gravity
For the period to be 1 second, then we must look for the necessary length for such a requirement so




The meter's length would be slight less than one-fourth of its current length. Also, the number of significant digits depends only on how precisely we know g, because the time has been defined to be exactly 1s.
Therefore the correct answer is C.
Answer:
i) 3.514 s, ii) 5.692 m/s
Explanation:
i) We can use Newton's second law of motion to find out how long does it take for the Eagle to touch down.
as the equation says for free-falling
h = ut +0.5gt^2
Here, h = 10 m, g = acceleration due to gravity = 1.62 m/s^2( on moon surface)
initial velocity u = 0
10 = 0.5×1.62t^2
t = 3.514 seconds
Therefore, it takes t = 3.514 seconds for the Eagle to touch down.
ii) use Newton's 1st equation of motion to calculate the velocity of the lunar module when it hits the surface of the moon
v = u + gt
v = 0+ 1.62×3.514
v= 5.692 m/s
The first law of thermodynamics states that energy cannot be created nor destroyed. It can be transformed from one form of energy to another, but the energy in an isolated system remains constant.
The answer then would be letter B. False.